This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar product over generalized Euclidean spaces is the componentwise real number multiplication. (Contributed by Thierry Arnoux, 18-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxval.r | |- H = ( RR^ ` I ) |
|
| rrxbase.b | |- B = ( Base ` H ) |
||
| rrxvsca.r | |- .xb = ( .s ` H ) |
||
| rrxvsca.i | |- ( ph -> I e. V ) |
||
| rrxvsca.j | |- ( ph -> J e. I ) |
||
| rrxvsca.a | |- ( ph -> A e. RR ) |
||
| rrxvsca.x | |- ( ph -> X e. ( Base ` H ) ) |
||
| Assertion | rrxvsca | |- ( ph -> ( ( A .xb X ) ` J ) = ( A x. ( X ` J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxval.r | |- H = ( RR^ ` I ) |
|
| 2 | rrxbase.b | |- B = ( Base ` H ) |
|
| 3 | rrxvsca.r | |- .xb = ( .s ` H ) |
|
| 4 | rrxvsca.i | |- ( ph -> I e. V ) |
|
| 5 | rrxvsca.j | |- ( ph -> J e. I ) |
|
| 6 | rrxvsca.a | |- ( ph -> A e. RR ) |
|
| 7 | rrxvsca.x | |- ( ph -> X e. ( Base ` H ) ) |
|
| 8 | 1 | rrxval | |- ( I e. V -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 9 | 4 8 | syl | |- ( ph -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 10 | 9 | fveq2d | |- ( ph -> ( .s ` H ) = ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 11 | 3 10 | eqtrid | |- ( ph -> .xb = ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 12 | 11 | oveqd | |- ( ph -> ( A .xb X ) = ( A ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) X ) ) |
| 13 | 12 | fveq1d | |- ( ph -> ( ( A .xb X ) ` J ) = ( ( A ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) X ) ` J ) ) |
| 14 | eqid | |- ( RRfld freeLMod I ) = ( RRfld freeLMod I ) |
|
| 15 | eqid | |- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( RRfld freeLMod I ) ) |
|
| 16 | rebase | |- RR = ( Base ` RRfld ) |
|
| 17 | 9 | fveq2d | |- ( ph -> ( Base ` H ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 18 | eqid | |- ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( RRfld freeLMod I ) ) |
|
| 19 | 18 15 | tcphbas | |- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 20 | 17 19 | eqtr4di | |- ( ph -> ( Base ` H ) = ( Base ` ( RRfld freeLMod I ) ) ) |
| 21 | 7 20 | eleqtrd | |- ( ph -> X e. ( Base ` ( RRfld freeLMod I ) ) ) |
| 22 | eqid | |- ( .s ` ( RRfld freeLMod I ) ) = ( .s ` ( RRfld freeLMod I ) ) |
|
| 23 | 18 22 | tcphvsca | |- ( .s ` ( RRfld freeLMod I ) ) = ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 24 | 23 | eqcomi | |- ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( .s ` ( RRfld freeLMod I ) ) |
| 25 | remulr | |- x. = ( .r ` RRfld ) |
|
| 26 | 14 15 16 4 6 21 5 24 25 | frlmvscaval | |- ( ph -> ( ( A ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) X ) ` J ) = ( A x. ( X ` J ) ) ) |
| 27 | 13 26 | eqtrd | |- ( ph -> ( ( A .xb X ) ` J ) = ( A x. ( X ` J ) ) ) |