This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The free module is a module. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frlmval.f | |- F = ( R freeLMod I ) |
|
| Assertion | frlmlmod | |- ( ( R e. Ring /\ I e. W ) -> F e. LMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmval.f | |- F = ( R freeLMod I ) |
|
| 2 | 1 | frlmval | |- ( ( R e. Ring /\ I e. W ) -> F = ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) |
| 3 | simpr | |- ( ( R e. Ring /\ I e. W ) -> I e. W ) |
|
| 4 | simpl | |- ( ( R e. Ring /\ I e. W ) -> R e. Ring ) |
|
| 5 | rlmlmod | |- ( R e. Ring -> ( ringLMod ` R ) e. LMod ) |
|
| 6 | 5 | adantr | |- ( ( R e. Ring /\ I e. W ) -> ( ringLMod ` R ) e. LMod ) |
| 7 | fconst6g | |- ( ( ringLMod ` R ) e. LMod -> ( I X. { ( ringLMod ` R ) } ) : I --> LMod ) |
|
| 8 | 6 7 | syl | |- ( ( R e. Ring /\ I e. W ) -> ( I X. { ( ringLMod ` R ) } ) : I --> LMod ) |
| 9 | fvex | |- ( ringLMod ` R ) e. _V |
|
| 10 | 9 | fvconst2 | |- ( i e. I -> ( ( I X. { ( ringLMod ` R ) } ) ` i ) = ( ringLMod ` R ) ) |
| 11 | 10 | adantl | |- ( ( ( R e. Ring /\ I e. W ) /\ i e. I ) -> ( ( I X. { ( ringLMod ` R ) } ) ` i ) = ( ringLMod ` R ) ) |
| 12 | 11 | fveq2d | |- ( ( ( R e. Ring /\ I e. W ) /\ i e. I ) -> ( Scalar ` ( ( I X. { ( ringLMod ` R ) } ) ` i ) ) = ( Scalar ` ( ringLMod ` R ) ) ) |
| 13 | rlmsca | |- ( R e. Ring -> R = ( Scalar ` ( ringLMod ` R ) ) ) |
|
| 14 | 13 | ad2antrr | |- ( ( ( R e. Ring /\ I e. W ) /\ i e. I ) -> R = ( Scalar ` ( ringLMod ` R ) ) ) |
| 15 | 12 14 | eqtr4d | |- ( ( ( R e. Ring /\ I e. W ) /\ i e. I ) -> ( Scalar ` ( ( I X. { ( ringLMod ` R ) } ) ` i ) ) = R ) |
| 16 | eqid | |- ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) = ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) |
|
| 17 | 3 4 8 15 16 | dsmmlmod | |- ( ( R e. Ring /\ I e. W ) -> ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) e. LMod ) |
| 18 | 2 17 | eqeltrd | |- ( ( R e. Ring /\ I e. W ) -> F e. LMod ) |