This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define n-dimensional Euclidean space as a metric space with the standard Euclidean norm given by the quadratic mean. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-rrn | |- Rn = ( i e. Fin |-> ( x e. ( RR ^m i ) , y e. ( RR ^m i ) |-> ( sqrt ` sum_ k e. i ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | crrn | |- Rn |
|
| 1 | vi | |- i |
|
| 2 | cfn | |- Fin |
|
| 3 | vx | |- x |
|
| 4 | cr | |- RR |
|
| 5 | cmap | |- ^m |
|
| 6 | 1 | cv | |- i |
| 7 | 4 6 5 | co | |- ( RR ^m i ) |
| 8 | vy | |- y |
|
| 9 | csqrt | |- sqrt |
|
| 10 | vk | |- k |
|
| 11 | 3 | cv | |- x |
| 12 | 10 | cv | |- k |
| 13 | 12 11 | cfv | |- ( x ` k ) |
| 14 | cmin | |- - |
|
| 15 | 8 | cv | |- y |
| 16 | 12 15 | cfv | |- ( y ` k ) |
| 17 | 13 16 14 | co | |- ( ( x ` k ) - ( y ` k ) ) |
| 18 | cexp | |- ^ |
|
| 19 | c2 | |- 2 |
|
| 20 | 17 19 18 | co | |- ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) |
| 21 | 6 20 10 | csu | |- sum_ k e. i ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) |
| 22 | 21 9 | cfv | |- ( sqrt ` sum_ k e. i ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) |
| 23 | 3 8 7 7 22 | cmpo | |- ( x e. ( RR ^m i ) , y e. ( RR ^m i ) |-> ( sqrt ` sum_ k e. i ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) |
| 24 | 1 2 23 | cmpt | |- ( i e. Fin |-> ( x e. ( RR ^m i ) , y e. ( RR ^m i ) |-> ( sqrt ` sum_ k e. i ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) |
| 25 | 0 24 | wceq | |- Rn = ( i e. Fin |-> ( x e. ( RR ^m i ) , y e. ( RR ^m i ) |-> ( sqrt ` sum_ k e. i ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) |