This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality of group subtraction. (Contributed by Mario Carneiro, 9-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubcl.b | |- B = ( Base ` G ) |
|
| grpsubcl.m | |- .- = ( -g ` G ) |
||
| Assertion | grpsubf | |- ( G e. Grp -> .- : ( B X. B ) --> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubcl.b | |- B = ( Base ` G ) |
|
| 2 | grpsubcl.m | |- .- = ( -g ` G ) |
|
| 3 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 4 | 1 3 | grpinvcl | |- ( ( G e. Grp /\ y e. B ) -> ( ( invg ` G ) ` y ) e. B ) |
| 5 | 4 | 3adant2 | |- ( ( G e. Grp /\ x e. B /\ y e. B ) -> ( ( invg ` G ) ` y ) e. B ) |
| 6 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 7 | 1 6 | grpcl | |- ( ( G e. Grp /\ x e. B /\ ( ( invg ` G ) ` y ) e. B ) -> ( x ( +g ` G ) ( ( invg ` G ) ` y ) ) e. B ) |
| 8 | 5 7 | syld3an3 | |- ( ( G e. Grp /\ x e. B /\ y e. B ) -> ( x ( +g ` G ) ( ( invg ` G ) ` y ) ) e. B ) |
| 9 | 8 | 3expb | |- ( ( G e. Grp /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` G ) ( ( invg ` G ) ` y ) ) e. B ) |
| 10 | 9 | ralrimivva | |- ( G e. Grp -> A. x e. B A. y e. B ( x ( +g ` G ) ( ( invg ` G ) ` y ) ) e. B ) |
| 11 | 1 6 3 2 | grpsubfval | |- .- = ( x e. B , y e. B |-> ( x ( +g ` G ) ( ( invg ` G ) ` y ) ) ) |
| 12 | 11 | fmpo | |- ( A. x e. B A. y e. B ( x ( +g ` G ) ( ( invg ` G ) ` y ) ) e. B <-> .- : ( B X. B ) --> B ) |
| 13 | 10 12 | sylib | |- ( G e. Grp -> .- : ( B X. B ) --> B ) |