This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxval.r | |- H = ( RR^ ` I ) |
|
| rrxbase.b | |- B = ( Base ` H ) |
||
| Assertion | rrxnm | |- ( I e. V -> ( f e. B |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( f ` x ) ^ 2 ) ) ) ) ) = ( norm ` H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxval.r | |- H = ( RR^ ` I ) |
|
| 2 | rrxbase.b | |- B = ( Base ` H ) |
|
| 3 | resrng | |- RRfld e. *Ring |
|
| 4 | srngring | |- ( RRfld e. *Ring -> RRfld e. Ring ) |
|
| 5 | 3 4 | ax-mp | |- RRfld e. Ring |
| 6 | eqid | |- ( RRfld freeLMod I ) = ( RRfld freeLMod I ) |
|
| 7 | 6 | frlmlmod | |- ( ( RRfld e. Ring /\ I e. V ) -> ( RRfld freeLMod I ) e. LMod ) |
| 8 | 5 7 | mpan | |- ( I e. V -> ( RRfld freeLMod I ) e. LMod ) |
| 9 | lmodgrp | |- ( ( RRfld freeLMod I ) e. LMod -> ( RRfld freeLMod I ) e. Grp ) |
|
| 10 | eqid | |- ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( RRfld freeLMod I ) ) |
|
| 11 | eqid | |- ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
|
| 12 | eqid | |- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( RRfld freeLMod I ) ) |
|
| 13 | eqid | |- ( .i ` ( RRfld freeLMod I ) ) = ( .i ` ( RRfld freeLMod I ) ) |
|
| 14 | 10 11 12 13 | tchnmfval | |- ( ( RRfld freeLMod I ) e. Grp -> ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( f e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( f ( .i ` ( RRfld freeLMod I ) ) f ) ) ) ) |
| 15 | 8 9 14 | 3syl | |- ( I e. V -> ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( f e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( f ( .i ` ( RRfld freeLMod I ) ) f ) ) ) ) |
| 16 | 1 | rrxval | |- ( I e. V -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 17 | 16 | fveq2d | |- ( I e. V -> ( norm ` H ) = ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 18 | 16 | fveq2d | |- ( I e. V -> ( Base ` H ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 19 | 10 12 | tcphbas | |- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 20 | 18 2 19 | 3eqtr4g | |- ( I e. V -> B = ( Base ` ( RRfld freeLMod I ) ) ) |
| 21 | 1 2 | rrxbase | |- ( I e. V -> B = { f e. ( RR ^m I ) | f finSupp 0 } ) |
| 22 | ssrab2 | |- { f e. ( RR ^m I ) | f finSupp 0 } C_ ( RR ^m I ) |
|
| 23 | 21 22 | eqsstrdi | |- ( I e. V -> B C_ ( RR ^m I ) ) |
| 24 | 23 | sselda | |- ( ( I e. V /\ f e. B ) -> f e. ( RR ^m I ) ) |
| 25 | 16 | fveq2d | |- ( I e. V -> ( .i ` H ) = ( .i ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 26 | 1 2 | rrxip | |- ( I e. V -> ( h e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( RRfld gsum ( x e. I |-> ( ( h ` x ) x. ( g ` x ) ) ) ) ) = ( .i ` H ) ) |
| 27 | 10 13 | tcphip | |- ( .i ` ( RRfld freeLMod I ) ) = ( .i ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 28 | 27 | a1i | |- ( I e. V -> ( .i ` ( RRfld freeLMod I ) ) = ( .i ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 29 | 25 26 28 | 3eqtr4rd | |- ( I e. V -> ( .i ` ( RRfld freeLMod I ) ) = ( h e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( RRfld gsum ( x e. I |-> ( ( h ` x ) x. ( g ` x ) ) ) ) ) ) |
| 30 | 29 | adantr | |- ( ( I e. V /\ f e. ( RR ^m I ) ) -> ( .i ` ( RRfld freeLMod I ) ) = ( h e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( RRfld gsum ( x e. I |-> ( ( h ` x ) x. ( g ` x ) ) ) ) ) ) |
| 31 | simprl | |- ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) -> h = f ) |
|
| 32 | 31 | fveq1d | |- ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) -> ( h ` x ) = ( f ` x ) ) |
| 33 | simprr | |- ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) -> g = f ) |
|
| 34 | 33 | fveq1d | |- ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) -> ( g ` x ) = ( f ` x ) ) |
| 35 | 32 34 | oveq12d | |- ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) -> ( ( h ` x ) x. ( g ` x ) ) = ( ( f ` x ) x. ( f ` x ) ) ) |
| 36 | 35 | adantr | |- ( ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) /\ x e. I ) -> ( ( h ` x ) x. ( g ` x ) ) = ( ( f ` x ) x. ( f ` x ) ) ) |
| 37 | elmapi | |- ( f e. ( RR ^m I ) -> f : I --> RR ) |
|
| 38 | 37 | adantl | |- ( ( I e. V /\ f e. ( RR ^m I ) ) -> f : I --> RR ) |
| 39 | 38 | ffvelcdmda | |- ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ x e. I ) -> ( f ` x ) e. RR ) |
| 40 | 39 | recnd | |- ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ x e. I ) -> ( f ` x ) e. CC ) |
| 41 | 40 | adantlr | |- ( ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) /\ x e. I ) -> ( f ` x ) e. CC ) |
| 42 | 41 | sqvald | |- ( ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) /\ x e. I ) -> ( ( f ` x ) ^ 2 ) = ( ( f ` x ) x. ( f ` x ) ) ) |
| 43 | 36 42 | eqtr4d | |- ( ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) /\ x e. I ) -> ( ( h ` x ) x. ( g ` x ) ) = ( ( f ` x ) ^ 2 ) ) |
| 44 | 43 | mpteq2dva | |- ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) -> ( x e. I |-> ( ( h ` x ) x. ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) ^ 2 ) ) ) |
| 45 | 44 | oveq2d | |- ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) -> ( RRfld gsum ( x e. I |-> ( ( h ` x ) x. ( g ` x ) ) ) ) = ( RRfld gsum ( x e. I |-> ( ( f ` x ) ^ 2 ) ) ) ) |
| 46 | simpr | |- ( ( I e. V /\ f e. ( RR ^m I ) ) -> f e. ( RR ^m I ) ) |
|
| 47 | ovexd | |- ( ( I e. V /\ f e. ( RR ^m I ) ) -> ( RRfld gsum ( x e. I |-> ( ( f ` x ) ^ 2 ) ) ) e. _V ) |
|
| 48 | 30 45 46 46 47 | ovmpod | |- ( ( I e. V /\ f e. ( RR ^m I ) ) -> ( f ( .i ` ( RRfld freeLMod I ) ) f ) = ( RRfld gsum ( x e. I |-> ( ( f ` x ) ^ 2 ) ) ) ) |
| 49 | 24 48 | syldan | |- ( ( I e. V /\ f e. B ) -> ( f ( .i ` ( RRfld freeLMod I ) ) f ) = ( RRfld gsum ( x e. I |-> ( ( f ` x ) ^ 2 ) ) ) ) |
| 50 | 49 | eqcomd | |- ( ( I e. V /\ f e. B ) -> ( RRfld gsum ( x e. I |-> ( ( f ` x ) ^ 2 ) ) ) = ( f ( .i ` ( RRfld freeLMod I ) ) f ) ) |
| 51 | 50 | fveq2d | |- ( ( I e. V /\ f e. B ) -> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( f ` x ) ^ 2 ) ) ) ) = ( sqrt ` ( f ( .i ` ( RRfld freeLMod I ) ) f ) ) ) |
| 52 | 20 51 | mpteq12dva | |- ( I e. V -> ( f e. B |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( f ` x ) ^ 2 ) ) ) ) ) = ( f e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( f ( .i ` ( RRfld freeLMod I ) ) f ) ) ) ) |
| 53 | 15 17 52 | 3eqtr4rd | |- ( I e. V -> ( f e. B |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( f ` x ) ^ 2 ) ) ) ) ) = ( norm ` H ) ) |