This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of two functions. Variation of fmptco when the second function has two arguments. (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fmpoco.1 | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> R e. C ) |
|
| fmpoco.2 | |- ( ph -> F = ( x e. A , y e. B |-> R ) ) |
||
| fmpoco.3 | |- ( ph -> G = ( z e. C |-> S ) ) |
||
| fmpoco.4 | |- ( z = R -> S = T ) |
||
| Assertion | fmpoco | |- ( ph -> ( G o. F ) = ( x e. A , y e. B |-> T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpoco.1 | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> R e. C ) |
|
| 2 | fmpoco.2 | |- ( ph -> F = ( x e. A , y e. B |-> R ) ) |
|
| 3 | fmpoco.3 | |- ( ph -> G = ( z e. C |-> S ) ) |
|
| 4 | fmpoco.4 | |- ( z = R -> S = T ) |
|
| 5 | 1 | ralrimivva | |- ( ph -> A. x e. A A. y e. B R e. C ) |
| 6 | eqid | |- ( x e. A , y e. B |-> R ) = ( x e. A , y e. B |-> R ) |
|
| 7 | 6 | fmpo | |- ( A. x e. A A. y e. B R e. C <-> ( x e. A , y e. B |-> R ) : ( A X. B ) --> C ) |
| 8 | 5 7 | sylib | |- ( ph -> ( x e. A , y e. B |-> R ) : ( A X. B ) --> C ) |
| 9 | nfcv | |- F/_ u R |
|
| 10 | nfcv | |- F/_ v R |
|
| 11 | nfcv | |- F/_ x v |
|
| 12 | nfcsb1v | |- F/_ x [_ u / x ]_ R |
|
| 13 | 11 12 | nfcsbw | |- F/_ x [_ v / y ]_ [_ u / x ]_ R |
| 14 | nfcsb1v | |- F/_ y [_ v / y ]_ [_ u / x ]_ R |
|
| 15 | csbeq1a | |- ( x = u -> R = [_ u / x ]_ R ) |
|
| 16 | csbeq1a | |- ( y = v -> [_ u / x ]_ R = [_ v / y ]_ [_ u / x ]_ R ) |
|
| 17 | 15 16 | sylan9eq | |- ( ( x = u /\ y = v ) -> R = [_ v / y ]_ [_ u / x ]_ R ) |
| 18 | 9 10 13 14 17 | cbvmpo | |- ( x e. A , y e. B |-> R ) = ( u e. A , v e. B |-> [_ v / y ]_ [_ u / x ]_ R ) |
| 19 | vex | |- u e. _V |
|
| 20 | vex | |- v e. _V |
|
| 21 | 19 20 | op2ndd | |- ( w = <. u , v >. -> ( 2nd ` w ) = v ) |
| 22 | 21 | csbeq1d | |- ( w = <. u , v >. -> [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R = [_ v / y ]_ [_ ( 1st ` w ) / x ]_ R ) |
| 23 | 19 20 | op1std | |- ( w = <. u , v >. -> ( 1st ` w ) = u ) |
| 24 | 23 | csbeq1d | |- ( w = <. u , v >. -> [_ ( 1st ` w ) / x ]_ R = [_ u / x ]_ R ) |
| 25 | 24 | csbeq2dv | |- ( w = <. u , v >. -> [_ v / y ]_ [_ ( 1st ` w ) / x ]_ R = [_ v / y ]_ [_ u / x ]_ R ) |
| 26 | 22 25 | eqtrd | |- ( w = <. u , v >. -> [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R = [_ v / y ]_ [_ u / x ]_ R ) |
| 27 | 26 | mpompt | |- ( w e. ( A X. B ) |-> [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R ) = ( u e. A , v e. B |-> [_ v / y ]_ [_ u / x ]_ R ) |
| 28 | 18 27 | eqtr4i | |- ( x e. A , y e. B |-> R ) = ( w e. ( A X. B ) |-> [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R ) |
| 29 | 28 | fmpt | |- ( A. w e. ( A X. B ) [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R e. C <-> ( x e. A , y e. B |-> R ) : ( A X. B ) --> C ) |
| 30 | 8 29 | sylibr | |- ( ph -> A. w e. ( A X. B ) [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R e. C ) |
| 31 | 2 28 | eqtrdi | |- ( ph -> F = ( w e. ( A X. B ) |-> [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R ) ) |
| 32 | 30 31 3 | fmptcos | |- ( ph -> ( G o. F ) = ( w e. ( A X. B ) |-> [_ [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R / z ]_ S ) ) |
| 33 | 26 | csbeq1d | |- ( w = <. u , v >. -> [_ [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R / z ]_ S = [_ [_ v / y ]_ [_ u / x ]_ R / z ]_ S ) |
| 34 | 33 | mpompt | |- ( w e. ( A X. B ) |-> [_ [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R / z ]_ S ) = ( u e. A , v e. B |-> [_ [_ v / y ]_ [_ u / x ]_ R / z ]_ S ) |
| 35 | nfcv | |- F/_ u [_ R / z ]_ S |
|
| 36 | nfcv | |- F/_ v [_ R / z ]_ S |
|
| 37 | nfcv | |- F/_ x S |
|
| 38 | 13 37 | nfcsbw | |- F/_ x [_ [_ v / y ]_ [_ u / x ]_ R / z ]_ S |
| 39 | nfcv | |- F/_ y S |
|
| 40 | 14 39 | nfcsbw | |- F/_ y [_ [_ v / y ]_ [_ u / x ]_ R / z ]_ S |
| 41 | 17 | csbeq1d | |- ( ( x = u /\ y = v ) -> [_ R / z ]_ S = [_ [_ v / y ]_ [_ u / x ]_ R / z ]_ S ) |
| 42 | 35 36 38 40 41 | cbvmpo | |- ( x e. A , y e. B |-> [_ R / z ]_ S ) = ( u e. A , v e. B |-> [_ [_ v / y ]_ [_ u / x ]_ R / z ]_ S ) |
| 43 | 34 42 | eqtr4i | |- ( w e. ( A X. B ) |-> [_ [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R / z ]_ S ) = ( x e. A , y e. B |-> [_ R / z ]_ S ) |
| 44 | 1 | 3impb | |- ( ( ph /\ x e. A /\ y e. B ) -> R e. C ) |
| 45 | nfcvd | |- ( R e. C -> F/_ z T ) |
|
| 46 | 45 4 | csbiegf | |- ( R e. C -> [_ R / z ]_ S = T ) |
| 47 | 44 46 | syl | |- ( ( ph /\ x e. A /\ y e. B ) -> [_ R / z ]_ S = T ) |
| 48 | 47 | mpoeq3dva | |- ( ph -> ( x e. A , y e. B |-> [_ R / z ]_ S ) = ( x e. A , y e. B |-> T ) ) |
| 49 | 43 48 | eqtrid | |- ( ph -> ( w e. ( A X. B ) |-> [_ [_ ( 2nd ` w ) / y ]_ [_ ( 1st ` w ) / x ]_ R / z ]_ S ) = ( x e. A , y e. B |-> T ) ) |
| 50 | 32 49 | eqtrd | |- ( ph -> ( G o. F ) = ( x e. A , y e. B |-> T ) ) |