This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rpnnen2.1 | |- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
|
| Assertion | rpnnen2lem2 | |- ( A C_ NN -> ( F ` A ) : NN --> RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen2.1 | |- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
|
| 2 | nnex | |- NN e. _V |
|
| 3 | 2 | elpw2 | |- ( A e. ~P NN <-> A C_ NN ) |
| 4 | eleq2 | |- ( x = A -> ( n e. x <-> n e. A ) ) |
|
| 5 | 4 | ifbid | |- ( x = A -> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) = if ( n e. A , ( ( 1 / 3 ) ^ n ) , 0 ) ) |
| 6 | 5 | mpteq2dv | |- ( x = A -> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) = ( n e. NN |-> if ( n e. A , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
| 7 | 2 | mptex | |- ( n e. NN |-> if ( n e. A , ( ( 1 / 3 ) ^ n ) , 0 ) ) e. _V |
| 8 | 6 1 7 | fvmpt | |- ( A e. ~P NN -> ( F ` A ) = ( n e. NN |-> if ( n e. A , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
| 9 | 3 8 | sylbir | |- ( A C_ NN -> ( F ` A ) = ( n e. NN |-> if ( n e. A , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
| 10 | 1re | |- 1 e. RR |
|
| 11 | 3nn | |- 3 e. NN |
|
| 12 | nndivre | |- ( ( 1 e. RR /\ 3 e. NN ) -> ( 1 / 3 ) e. RR ) |
|
| 13 | 10 11 12 | mp2an | |- ( 1 / 3 ) e. RR |
| 14 | nnnn0 | |- ( n e. NN -> n e. NN0 ) |
|
| 15 | reexpcl | |- ( ( ( 1 / 3 ) e. RR /\ n e. NN0 ) -> ( ( 1 / 3 ) ^ n ) e. RR ) |
|
| 16 | 13 14 15 | sylancr | |- ( n e. NN -> ( ( 1 / 3 ) ^ n ) e. RR ) |
| 17 | 0re | |- 0 e. RR |
|
| 18 | ifcl | |- ( ( ( ( 1 / 3 ) ^ n ) e. RR /\ 0 e. RR ) -> if ( n e. A , ( ( 1 / 3 ) ^ n ) , 0 ) e. RR ) |
|
| 19 | 16 17 18 | sylancl | |- ( n e. NN -> if ( n e. A , ( ( 1 / 3 ) ^ n ) , 0 ) e. RR ) |
| 20 | 19 | adantl | |- ( ( A C_ NN /\ n e. NN ) -> if ( n e. A , ( ( 1 / 3 ) ^ n ) , 0 ) e. RR ) |
| 21 | 9 20 | fmpt3d | |- ( A C_ NN -> ( F ` A ) : NN --> RR ) |