This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rpnnen2.1 | |- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
|
| rpnnen2.2 | |- ( ph -> A C_ NN ) |
||
| rpnnen2.3 | |- ( ph -> B C_ NN ) |
||
| rpnnen2.4 | |- ( ph -> m e. ( A \ B ) ) |
||
| rpnnen2.5 | |- ( ph -> A. n e. NN ( n < m -> ( n e. A <-> n e. B ) ) ) |
||
| rpnnen2.6 | |- ( ps <-> sum_ k e. NN ( ( F ` A ) ` k ) = sum_ k e. NN ( ( F ` B ) ` k ) ) |
||
| Assertion | rpnnen2lem10 | |- ( ( ph /\ ps ) -> sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) = sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen2.1 | |- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
|
| 2 | rpnnen2.2 | |- ( ph -> A C_ NN ) |
|
| 3 | rpnnen2.3 | |- ( ph -> B C_ NN ) |
|
| 4 | rpnnen2.4 | |- ( ph -> m e. ( A \ B ) ) |
|
| 5 | rpnnen2.5 | |- ( ph -> A. n e. NN ( n < m -> ( n e. A <-> n e. B ) ) ) |
|
| 6 | rpnnen2.6 | |- ( ps <-> sum_ k e. NN ( ( F ` A ) ` k ) = sum_ k e. NN ( ( F ` B ) ` k ) ) |
|
| 7 | simpr | |- ( ( ph /\ ps ) -> ps ) |
|
| 8 | 7 6 | sylib | |- ( ( ph /\ ps ) -> sum_ k e. NN ( ( F ` A ) ` k ) = sum_ k e. NN ( ( F ` B ) ` k ) ) |
| 9 | eldifi | |- ( m e. ( A \ B ) -> m e. A ) |
|
| 10 | ssel2 | |- ( ( A C_ NN /\ m e. A ) -> m e. NN ) |
|
| 11 | 9 10 | sylan2 | |- ( ( A C_ NN /\ m e. ( A \ B ) ) -> m e. NN ) |
| 12 | 2 4 11 | syl2anc | |- ( ph -> m e. NN ) |
| 13 | 1 | rpnnen2lem8 | |- ( ( A C_ NN /\ m e. NN ) -> sum_ k e. NN ( ( F ` A ) ` k ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` A ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) ) |
| 14 | 2 12 13 | syl2anc | |- ( ph -> sum_ k e. NN ( ( F ` A ) ` k ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` A ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) ) |
| 15 | 1z | |- 1 e. ZZ |
|
| 16 | nnz | |- ( m e. NN -> m e. ZZ ) |
|
| 17 | elfzm11 | |- ( ( 1 e. ZZ /\ m e. ZZ ) -> ( k e. ( 1 ... ( m - 1 ) ) <-> ( k e. ZZ /\ 1 <_ k /\ k < m ) ) ) |
|
| 18 | 15 16 17 | sylancr | |- ( m e. NN -> ( k e. ( 1 ... ( m - 1 ) ) <-> ( k e. ZZ /\ 1 <_ k /\ k < m ) ) ) |
| 19 | 18 | biimpa | |- ( ( m e. NN /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( k e. ZZ /\ 1 <_ k /\ k < m ) ) |
| 20 | 12 19 | sylan | |- ( ( ph /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( k e. ZZ /\ 1 <_ k /\ k < m ) ) |
| 21 | 20 | simp3d | |- ( ( ph /\ k e. ( 1 ... ( m - 1 ) ) ) -> k < m ) |
| 22 | elfznn | |- ( k e. ( 1 ... ( m - 1 ) ) -> k e. NN ) |
|
| 23 | breq1 | |- ( n = k -> ( n < m <-> k < m ) ) |
|
| 24 | eleq1w | |- ( n = k -> ( n e. A <-> k e. A ) ) |
|
| 25 | eleq1w | |- ( n = k -> ( n e. B <-> k e. B ) ) |
|
| 26 | 24 25 | bibi12d | |- ( n = k -> ( ( n e. A <-> n e. B ) <-> ( k e. A <-> k e. B ) ) ) |
| 27 | 23 26 | imbi12d | |- ( n = k -> ( ( n < m -> ( n e. A <-> n e. B ) ) <-> ( k < m -> ( k e. A <-> k e. B ) ) ) ) |
| 28 | 27 | rspccva | |- ( ( A. n e. NN ( n < m -> ( n e. A <-> n e. B ) ) /\ k e. NN ) -> ( k < m -> ( k e. A <-> k e. B ) ) ) |
| 29 | 5 22 28 | syl2an | |- ( ( ph /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( k < m -> ( k e. A <-> k e. B ) ) ) |
| 30 | 21 29 | mpd | |- ( ( ph /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( k e. A <-> k e. B ) ) |
| 31 | 30 | ifbid | |- ( ( ph /\ k e. ( 1 ... ( m - 1 ) ) ) -> if ( k e. A , ( ( 1 / 3 ) ^ k ) , 0 ) = if ( k e. B , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
| 32 | 1 | rpnnen2lem1 | |- ( ( A C_ NN /\ k e. NN ) -> ( ( F ` A ) ` k ) = if ( k e. A , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
| 33 | 2 22 32 | syl2an | |- ( ( ph /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( ( F ` A ) ` k ) = if ( k e. A , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
| 34 | 1 | rpnnen2lem1 | |- ( ( B C_ NN /\ k e. NN ) -> ( ( F ` B ) ` k ) = if ( k e. B , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
| 35 | 3 22 34 | syl2an | |- ( ( ph /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( ( F ` B ) ` k ) = if ( k e. B , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
| 36 | 31 33 35 | 3eqtr4d | |- ( ( ph /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( ( F ` A ) ` k ) = ( ( F ` B ) ` k ) ) |
| 37 | 36 | sumeq2dv | |- ( ph -> sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` A ) ` k ) = sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) ) |
| 38 | 37 | oveq1d | |- ( ph -> ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` A ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) ) |
| 39 | 14 38 | eqtrd | |- ( ph -> sum_ k e. NN ( ( F ` A ) ` k ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) ) |
| 40 | 39 | adantr | |- ( ( ph /\ ps ) -> sum_ k e. NN ( ( F ` A ) ` k ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) ) |
| 41 | 1 | rpnnen2lem8 | |- ( ( B C_ NN /\ m e. NN ) -> sum_ k e. NN ( ( F ` B ) ` k ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) ) |
| 42 | 3 12 41 | syl2anc | |- ( ph -> sum_ k e. NN ( ( F ` B ) ` k ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) ) |
| 43 | 42 | adantr | |- ( ( ph /\ ps ) -> sum_ k e. NN ( ( F ` B ) ` k ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) ) |
| 44 | 8 40 43 | 3eqtr3d | |- ( ( ph /\ ps ) -> ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) ) |
| 45 | 1 | rpnnen2lem6 | |- ( ( A C_ NN /\ m e. NN ) -> sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) e. RR ) |
| 46 | 2 12 45 | syl2anc | |- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) e. RR ) |
| 47 | 1 | rpnnen2lem6 | |- ( ( B C_ NN /\ m e. NN ) -> sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) e. RR ) |
| 48 | 3 12 47 | syl2anc | |- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) e. RR ) |
| 49 | fzfid | |- ( ph -> ( 1 ... ( m - 1 ) ) e. Fin ) |
|
| 50 | 1 | rpnnen2lem2 | |- ( B C_ NN -> ( F ` B ) : NN --> RR ) |
| 51 | 3 50 | syl | |- ( ph -> ( F ` B ) : NN --> RR ) |
| 52 | ffvelcdm | |- ( ( ( F ` B ) : NN --> RR /\ k e. NN ) -> ( ( F ` B ) ` k ) e. RR ) |
|
| 53 | 51 22 52 | syl2an | |- ( ( ph /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( ( F ` B ) ` k ) e. RR ) |
| 54 | 49 53 | fsumrecl | |- ( ph -> sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) e. RR ) |
| 55 | readdcan | |- ( ( sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) e. RR /\ sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) e. RR /\ sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) e. RR ) -> ( ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) <-> sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) = sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) ) |
|
| 56 | 46 48 54 55 | syl3anc | |- ( ph -> ( ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) <-> sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) = sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) ) |
| 57 | 56 | adantr | |- ( ( ph /\ ps ) -> ( ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) <-> sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) = sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) ) |
| 58 | 44 57 | mpbid | |- ( ( ph /\ ps ) -> sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) = sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) |