This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reciprocal of a positive number is positive. Exercise 4 of Apostol p. 21. (Contributed by NM, 15-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltplus1.1 | |- A e. RR |
|
| recgt0i.2 | |- 0 < A |
||
| Assertion | recgt0ii | |- 0 < ( 1 / A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltplus1.1 | |- A e. RR |
|
| 2 | recgt0i.2 | |- 0 < A |
|
| 3 | ax-1cn | |- 1 e. CC |
|
| 4 | 1 | recni | |- A e. CC |
| 5 | ax-1ne0 | |- 1 =/= 0 |
|
| 6 | 1 2 | gt0ne0ii | |- A =/= 0 |
| 7 | 3 4 5 6 | divne0i | |- ( 1 / A ) =/= 0 |
| 8 | 7 | nesymi | |- -. 0 = ( 1 / A ) |
| 9 | 0lt1 | |- 0 < 1 |
|
| 10 | 0re | |- 0 e. RR |
|
| 11 | 1re | |- 1 e. RR |
|
| 12 | 10 11 | ltnsymi | |- ( 0 < 1 -> -. 1 < 0 ) |
| 13 | 9 12 | ax-mp | |- -. 1 < 0 |
| 14 | 1 6 | rereccli | |- ( 1 / A ) e. RR |
| 15 | 14 | renegcli | |- -u ( 1 / A ) e. RR |
| 16 | 15 1 | mulgt0i | |- ( ( 0 < -u ( 1 / A ) /\ 0 < A ) -> 0 < ( -u ( 1 / A ) x. A ) ) |
| 17 | 2 16 | mpan2 | |- ( 0 < -u ( 1 / A ) -> 0 < ( -u ( 1 / A ) x. A ) ) |
| 18 | 14 | recni | |- ( 1 / A ) e. CC |
| 19 | 18 4 | mulneg1i | |- ( -u ( 1 / A ) x. A ) = -u ( ( 1 / A ) x. A ) |
| 20 | 4 6 | recidi | |- ( A x. ( 1 / A ) ) = 1 |
| 21 | 4 18 20 | mulcomli | |- ( ( 1 / A ) x. A ) = 1 |
| 22 | 21 | negeqi | |- -u ( ( 1 / A ) x. A ) = -u 1 |
| 23 | 19 22 | eqtri | |- ( -u ( 1 / A ) x. A ) = -u 1 |
| 24 | 17 23 | breqtrdi | |- ( 0 < -u ( 1 / A ) -> 0 < -u 1 ) |
| 25 | lt0neg1 | |- ( ( 1 / A ) e. RR -> ( ( 1 / A ) < 0 <-> 0 < -u ( 1 / A ) ) ) |
|
| 26 | 14 25 | ax-mp | |- ( ( 1 / A ) < 0 <-> 0 < -u ( 1 / A ) ) |
| 27 | lt0neg1 | |- ( 1 e. RR -> ( 1 < 0 <-> 0 < -u 1 ) ) |
|
| 28 | 11 27 | ax-mp | |- ( 1 < 0 <-> 0 < -u 1 ) |
| 29 | 24 26 28 | 3imtr4i | |- ( ( 1 / A ) < 0 -> 1 < 0 ) |
| 30 | 13 29 | mto | |- -. ( 1 / A ) < 0 |
| 31 | 8 30 | pm3.2ni | |- -. ( 0 = ( 1 / A ) \/ ( 1 / A ) < 0 ) |
| 32 | axlttri | |- ( ( 0 e. RR /\ ( 1 / A ) e. RR ) -> ( 0 < ( 1 / A ) <-> -. ( 0 = ( 1 / A ) \/ ( 1 / A ) < 0 ) ) ) |
|
| 33 | 10 14 32 | mp2an | |- ( 0 < ( 1 / A ) <-> -. ( 0 = ( 1 / A ) \/ ( 1 / A ) < 0 ) ) |
| 34 | 31 33 | mpbir | |- 0 < ( 1 / A ) |