This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rpnnen2.1 | |- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
|
| Assertion | rpnnen2lem5 | |- ( ( A C_ NN /\ M e. NN ) -> seq M ( + , ( F ` A ) ) e. dom ~~> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen2.1 | |- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
|
| 2 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 3 | 1nn | |- 1 e. NN |
|
| 4 | 3 | a1i | |- ( A C_ NN -> 1 e. NN ) |
| 5 | ssid | |- NN C_ NN |
|
| 6 | 1 | rpnnen2lem2 | |- ( NN C_ NN -> ( F ` NN ) : NN --> RR ) |
| 7 | 5 6 | mp1i | |- ( A C_ NN -> ( F ` NN ) : NN --> RR ) |
| 8 | 7 | ffvelcdmda | |- ( ( A C_ NN /\ k e. NN ) -> ( ( F ` NN ) ` k ) e. RR ) |
| 9 | 1 | rpnnen2lem2 | |- ( A C_ NN -> ( F ` A ) : NN --> RR ) |
| 10 | 9 | ffvelcdmda | |- ( ( A C_ NN /\ k e. NN ) -> ( ( F ` A ) ` k ) e. RR ) |
| 11 | 1 | rpnnen2lem3 | |- seq 1 ( + , ( F ` NN ) ) ~~> ( 1 / 2 ) |
| 12 | seqex | |- seq 1 ( + , ( F ` NN ) ) e. _V |
|
| 13 | ovex | |- ( 1 / 2 ) e. _V |
|
| 14 | 12 13 | breldm | |- ( seq 1 ( + , ( F ` NN ) ) ~~> ( 1 / 2 ) -> seq 1 ( + , ( F ` NN ) ) e. dom ~~> ) |
| 15 | 11 14 | mp1i | |- ( A C_ NN -> seq 1 ( + , ( F ` NN ) ) e. dom ~~> ) |
| 16 | elnnuz | |- ( k e. NN <-> k e. ( ZZ>= ` 1 ) ) |
|
| 17 | 1 | rpnnen2lem4 | |- ( ( A C_ NN /\ NN C_ NN /\ k e. NN ) -> ( 0 <_ ( ( F ` A ) ` k ) /\ ( ( F ` A ) ` k ) <_ ( ( F ` NN ) ` k ) ) ) |
| 18 | 5 17 | mp3an2 | |- ( ( A C_ NN /\ k e. NN ) -> ( 0 <_ ( ( F ` A ) ` k ) /\ ( ( F ` A ) ` k ) <_ ( ( F ` NN ) ` k ) ) ) |
| 19 | 16 18 | sylan2br | |- ( ( A C_ NN /\ k e. ( ZZ>= ` 1 ) ) -> ( 0 <_ ( ( F ` A ) ` k ) /\ ( ( F ` A ) ` k ) <_ ( ( F ` NN ) ` k ) ) ) |
| 20 | 19 | simpld | |- ( ( A C_ NN /\ k e. ( ZZ>= ` 1 ) ) -> 0 <_ ( ( F ` A ) ` k ) ) |
| 21 | 19 | simprd | |- ( ( A C_ NN /\ k e. ( ZZ>= ` 1 ) ) -> ( ( F ` A ) ` k ) <_ ( ( F ` NN ) ` k ) ) |
| 22 | 2 4 8 10 15 20 21 | cvgcmp | |- ( A C_ NN -> seq 1 ( + , ( F ` A ) ) e. dom ~~> ) |
| 23 | 22 | adantr | |- ( ( A C_ NN /\ M e. NN ) -> seq 1 ( + , ( F ` A ) ) e. dom ~~> ) |
| 24 | simpr | |- ( ( A C_ NN /\ M e. NN ) -> M e. NN ) |
|
| 25 | 10 | adantlr | |- ( ( ( A C_ NN /\ M e. NN ) /\ k e. NN ) -> ( ( F ` A ) ` k ) e. RR ) |
| 26 | 25 | recnd | |- ( ( ( A C_ NN /\ M e. NN ) /\ k e. NN ) -> ( ( F ` A ) ` k ) e. CC ) |
| 27 | 2 24 26 | iserex | |- ( ( A C_ NN /\ M e. NN ) -> ( seq 1 ( + , ( F ` A ) ) e. dom ~~> <-> seq M ( + , ( F ` A ) ) e. dom ~~> ) ) |
| 28 | 23 27 | mpbid | |- ( ( A C_ NN /\ M e. NN ) -> seq M ( + , ( F ` A ) ) e. dom ~~> ) |