This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infinite sum of a converging infinite series equals the first term plus the infinite sum of the rest of it. (Contributed by NM, 2-Jan-2006) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isum1p.1 | |- Z = ( ZZ>= ` M ) |
|
| isum1p.3 | |- ( ph -> M e. ZZ ) |
||
| isum1p.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
||
| isum1p.5 | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
||
| isum1p.6 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
||
| Assertion | isum1p | |- ( ph -> sum_ k e. Z A = ( ( F ` M ) + sum_ k e. ( ZZ>= ` ( M + 1 ) ) A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isum1p.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | isum1p.3 | |- ( ph -> M e. ZZ ) |
|
| 3 | isum1p.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
|
| 4 | isum1p.5 | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
|
| 5 | isum1p.6 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
|
| 6 | eqid | |- ( ZZ>= ` ( M + 1 ) ) = ( ZZ>= ` ( M + 1 ) ) |
|
| 7 | uzid | |- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
|
| 8 | 2 7 | syl | |- ( ph -> M e. ( ZZ>= ` M ) ) |
| 9 | peano2uz | |- ( M e. ( ZZ>= ` M ) -> ( M + 1 ) e. ( ZZ>= ` M ) ) |
|
| 10 | 8 9 | syl | |- ( ph -> ( M + 1 ) e. ( ZZ>= ` M ) ) |
| 11 | 10 1 | eleqtrrdi | |- ( ph -> ( M + 1 ) e. Z ) |
| 12 | 1 6 11 3 4 5 | isumsplit | |- ( ph -> sum_ k e. Z A = ( sum_ k e. ( M ... ( ( M + 1 ) - 1 ) ) A + sum_ k e. ( ZZ>= ` ( M + 1 ) ) A ) ) |
| 13 | 2 | zcnd | |- ( ph -> M e. CC ) |
| 14 | ax-1cn | |- 1 e. CC |
|
| 15 | pncan | |- ( ( M e. CC /\ 1 e. CC ) -> ( ( M + 1 ) - 1 ) = M ) |
|
| 16 | 13 14 15 | sylancl | |- ( ph -> ( ( M + 1 ) - 1 ) = M ) |
| 17 | 16 | oveq2d | |- ( ph -> ( M ... ( ( M + 1 ) - 1 ) ) = ( M ... M ) ) |
| 18 | 17 | sumeq1d | |- ( ph -> sum_ k e. ( M ... ( ( M + 1 ) - 1 ) ) A = sum_ k e. ( M ... M ) A ) |
| 19 | elfzuz | |- ( k e. ( M ... M ) -> k e. ( ZZ>= ` M ) ) |
|
| 20 | 19 1 | eleqtrrdi | |- ( k e. ( M ... M ) -> k e. Z ) |
| 21 | 20 3 | sylan2 | |- ( ( ph /\ k e. ( M ... M ) ) -> ( F ` k ) = A ) |
| 22 | 21 | sumeq2dv | |- ( ph -> sum_ k e. ( M ... M ) ( F ` k ) = sum_ k e. ( M ... M ) A ) |
| 23 | fveq2 | |- ( k = M -> ( F ` k ) = ( F ` M ) ) |
|
| 24 | 23 | eleq1d | |- ( k = M -> ( ( F ` k ) e. CC <-> ( F ` M ) e. CC ) ) |
| 25 | 3 4 | eqeltrd | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 26 | 25 | ralrimiva | |- ( ph -> A. k e. Z ( F ` k ) e. CC ) |
| 27 | 8 1 | eleqtrrdi | |- ( ph -> M e. Z ) |
| 28 | 24 26 27 | rspcdva | |- ( ph -> ( F ` M ) e. CC ) |
| 29 | 23 | fsum1 | |- ( ( M e. ZZ /\ ( F ` M ) e. CC ) -> sum_ k e. ( M ... M ) ( F ` k ) = ( F ` M ) ) |
| 30 | 2 28 29 | syl2anc | |- ( ph -> sum_ k e. ( M ... M ) ( F ` k ) = ( F ` M ) ) |
| 31 | 18 22 30 | 3eqtr2d | |- ( ph -> sum_ k e. ( M ... ( ( M + 1 ) - 1 ) ) A = ( F ` M ) ) |
| 32 | 31 | oveq1d | |- ( ph -> ( sum_ k e. ( M ... ( ( M + 1 ) - 1 ) ) A + sum_ k e. ( ZZ>= ` ( M + 1 ) ) A ) = ( ( F ` M ) + sum_ k e. ( ZZ>= ` ( M + 1 ) ) A ) ) |
| 33 | 12 32 | eqtrd | |- ( ph -> sum_ k e. Z A = ( ( F ` M ) + sum_ k e. ( ZZ>= ` ( M + 1 ) ) A ) ) |