This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Contraposition law for subsets. (Contributed by NM, 22-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssconb | |- ( ( A C_ C /\ B C_ C ) -> ( A C_ ( C \ B ) <-> B C_ ( C \ A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | |- ( A C_ C -> ( x e. A -> x e. C ) ) |
|
| 2 | ssel | |- ( B C_ C -> ( x e. B -> x e. C ) ) |
|
| 3 | pm5.1 | |- ( ( ( x e. A -> x e. C ) /\ ( x e. B -> x e. C ) ) -> ( ( x e. A -> x e. C ) <-> ( x e. B -> x e. C ) ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A C_ C /\ B C_ C ) -> ( ( x e. A -> x e. C ) <-> ( x e. B -> x e. C ) ) ) |
| 5 | con2b | |- ( ( x e. A -> -. x e. B ) <-> ( x e. B -> -. x e. A ) ) |
|
| 6 | 5 | a1i | |- ( ( A C_ C /\ B C_ C ) -> ( ( x e. A -> -. x e. B ) <-> ( x e. B -> -. x e. A ) ) ) |
| 7 | 4 6 | anbi12d | |- ( ( A C_ C /\ B C_ C ) -> ( ( ( x e. A -> x e. C ) /\ ( x e. A -> -. x e. B ) ) <-> ( ( x e. B -> x e. C ) /\ ( x e. B -> -. x e. A ) ) ) ) |
| 8 | jcab | |- ( ( x e. A -> ( x e. C /\ -. x e. B ) ) <-> ( ( x e. A -> x e. C ) /\ ( x e. A -> -. x e. B ) ) ) |
|
| 9 | jcab | |- ( ( x e. B -> ( x e. C /\ -. x e. A ) ) <-> ( ( x e. B -> x e. C ) /\ ( x e. B -> -. x e. A ) ) ) |
|
| 10 | 7 8 9 | 3bitr4g | |- ( ( A C_ C /\ B C_ C ) -> ( ( x e. A -> ( x e. C /\ -. x e. B ) ) <-> ( x e. B -> ( x e. C /\ -. x e. A ) ) ) ) |
| 11 | eldif | |- ( x e. ( C \ B ) <-> ( x e. C /\ -. x e. B ) ) |
|
| 12 | 11 | imbi2i | |- ( ( x e. A -> x e. ( C \ B ) ) <-> ( x e. A -> ( x e. C /\ -. x e. B ) ) ) |
| 13 | eldif | |- ( x e. ( C \ A ) <-> ( x e. C /\ -. x e. A ) ) |
|
| 14 | 13 | imbi2i | |- ( ( x e. B -> x e. ( C \ A ) ) <-> ( x e. B -> ( x e. C /\ -. x e. A ) ) ) |
| 15 | 10 12 14 | 3bitr4g | |- ( ( A C_ C /\ B C_ C ) -> ( ( x e. A -> x e. ( C \ B ) ) <-> ( x e. B -> x e. ( C \ A ) ) ) ) |
| 16 | 15 | albidv | |- ( ( A C_ C /\ B C_ C ) -> ( A. x ( x e. A -> x e. ( C \ B ) ) <-> A. x ( x e. B -> x e. ( C \ A ) ) ) ) |
| 17 | df-ss | |- ( A C_ ( C \ B ) <-> A. x ( x e. A -> x e. ( C \ B ) ) ) |
|
| 18 | df-ss | |- ( B C_ ( C \ A ) <-> A. x ( x e. B -> x e. ( C \ A ) ) ) |
|
| 19 | 16 17 18 | 3bitr4g | |- ( ( A C_ C /\ B C_ C ) -> ( A C_ ( C \ B ) <-> B C_ ( C \ A ) ) ) |