This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rpnnen2.1 | |- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
|
| Assertion | rpnnen2lem6 | |- ( ( A C_ NN /\ M e. NN ) -> sum_ k e. ( ZZ>= ` M ) ( ( F ` A ) ` k ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen2.1 | |- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
|
| 2 | eqid | |- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
|
| 3 | nnz | |- ( M e. NN -> M e. ZZ ) |
|
| 4 | 3 | adantl | |- ( ( A C_ NN /\ M e. NN ) -> M e. ZZ ) |
| 5 | eqidd | |- ( ( ( A C_ NN /\ M e. NN ) /\ k e. ( ZZ>= ` M ) ) -> ( ( F ` A ) ` k ) = ( ( F ` A ) ` k ) ) |
|
| 6 | 1 | rpnnen2lem2 | |- ( A C_ NN -> ( F ` A ) : NN --> RR ) |
| 7 | 6 | ad2antrr | |- ( ( ( A C_ NN /\ M e. NN ) /\ k e. ( ZZ>= ` M ) ) -> ( F ` A ) : NN --> RR ) |
| 8 | eluznn | |- ( ( M e. NN /\ k e. ( ZZ>= ` M ) ) -> k e. NN ) |
|
| 9 | 8 | adantll | |- ( ( ( A C_ NN /\ M e. NN ) /\ k e. ( ZZ>= ` M ) ) -> k e. NN ) |
| 10 | 7 9 | ffvelcdmd | |- ( ( ( A C_ NN /\ M e. NN ) /\ k e. ( ZZ>= ` M ) ) -> ( ( F ` A ) ` k ) e. RR ) |
| 11 | 1 | rpnnen2lem5 | |- ( ( A C_ NN /\ M e. NN ) -> seq M ( + , ( F ` A ) ) e. dom ~~> ) |
| 12 | 2 4 5 10 11 | isumrecl | |- ( ( A C_ NN /\ M e. NN ) -> sum_ k e. ( ZZ>= ` M ) ( ( F ` A ) ` k ) e. RR ) |