This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rpnnen2.1 | |- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
|
| Assertion | rpnnen2lem7 | |- ( ( A C_ B /\ B C_ NN /\ M e. NN ) -> sum_ k e. ( ZZ>= ` M ) ( ( F ` A ) ` k ) <_ sum_ k e. ( ZZ>= ` M ) ( ( F ` B ) ` k ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen2.1 | |- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
|
| 2 | eqid | |- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
|
| 3 | simp3 | |- ( ( A C_ B /\ B C_ NN /\ M e. NN ) -> M e. NN ) |
|
| 4 | 3 | nnzd | |- ( ( A C_ B /\ B C_ NN /\ M e. NN ) -> M e. ZZ ) |
| 5 | eqidd | |- ( ( ( A C_ B /\ B C_ NN /\ M e. NN ) /\ k e. ( ZZ>= ` M ) ) -> ( ( F ` A ) ` k ) = ( ( F ` A ) ` k ) ) |
|
| 6 | eluznn | |- ( ( M e. NN /\ k e. ( ZZ>= ` M ) ) -> k e. NN ) |
|
| 7 | 3 6 | sylan | |- ( ( ( A C_ B /\ B C_ NN /\ M e. NN ) /\ k e. ( ZZ>= ` M ) ) -> k e. NN ) |
| 8 | sstr | |- ( ( A C_ B /\ B C_ NN ) -> A C_ NN ) |
|
| 9 | 8 | 3adant3 | |- ( ( A C_ B /\ B C_ NN /\ M e. NN ) -> A C_ NN ) |
| 10 | 1 | rpnnen2lem2 | |- ( A C_ NN -> ( F ` A ) : NN --> RR ) |
| 11 | 9 10 | syl | |- ( ( A C_ B /\ B C_ NN /\ M e. NN ) -> ( F ` A ) : NN --> RR ) |
| 12 | 11 | ffvelcdmda | |- ( ( ( A C_ B /\ B C_ NN /\ M e. NN ) /\ k e. NN ) -> ( ( F ` A ) ` k ) e. RR ) |
| 13 | 7 12 | syldan | |- ( ( ( A C_ B /\ B C_ NN /\ M e. NN ) /\ k e. ( ZZ>= ` M ) ) -> ( ( F ` A ) ` k ) e. RR ) |
| 14 | eqidd | |- ( ( ( A C_ B /\ B C_ NN /\ M e. NN ) /\ k e. ( ZZ>= ` M ) ) -> ( ( F ` B ) ` k ) = ( ( F ` B ) ` k ) ) |
|
| 15 | 1 | rpnnen2lem2 | |- ( B C_ NN -> ( F ` B ) : NN --> RR ) |
| 16 | 15 | 3ad2ant2 | |- ( ( A C_ B /\ B C_ NN /\ M e. NN ) -> ( F ` B ) : NN --> RR ) |
| 17 | 16 | ffvelcdmda | |- ( ( ( A C_ B /\ B C_ NN /\ M e. NN ) /\ k e. NN ) -> ( ( F ` B ) ` k ) e. RR ) |
| 18 | 7 17 | syldan | |- ( ( ( A C_ B /\ B C_ NN /\ M e. NN ) /\ k e. ( ZZ>= ` M ) ) -> ( ( F ` B ) ` k ) e. RR ) |
| 19 | 1 | rpnnen2lem4 | |- ( ( A C_ B /\ B C_ NN /\ k e. NN ) -> ( 0 <_ ( ( F ` A ) ` k ) /\ ( ( F ` A ) ` k ) <_ ( ( F ` B ) ` k ) ) ) |
| 20 | 19 | simprd | |- ( ( A C_ B /\ B C_ NN /\ k e. NN ) -> ( ( F ` A ) ` k ) <_ ( ( F ` B ) ` k ) ) |
| 21 | 20 | 3expa | |- ( ( ( A C_ B /\ B C_ NN ) /\ k e. NN ) -> ( ( F ` A ) ` k ) <_ ( ( F ` B ) ` k ) ) |
| 22 | 21 | 3adantl3 | |- ( ( ( A C_ B /\ B C_ NN /\ M e. NN ) /\ k e. NN ) -> ( ( F ` A ) ` k ) <_ ( ( F ` B ) ` k ) ) |
| 23 | 7 22 | syldan | |- ( ( ( A C_ B /\ B C_ NN /\ M e. NN ) /\ k e. ( ZZ>= ` M ) ) -> ( ( F ` A ) ` k ) <_ ( ( F ` B ) ` k ) ) |
| 24 | 1 | rpnnen2lem5 | |- ( ( A C_ NN /\ M e. NN ) -> seq M ( + , ( F ` A ) ) e. dom ~~> ) |
| 25 | 8 24 | stoic3 | |- ( ( A C_ B /\ B C_ NN /\ M e. NN ) -> seq M ( + , ( F ` A ) ) e. dom ~~> ) |
| 26 | 1 | rpnnen2lem5 | |- ( ( B C_ NN /\ M e. NN ) -> seq M ( + , ( F ` B ) ) e. dom ~~> ) |
| 27 | 26 | 3adant1 | |- ( ( A C_ B /\ B C_ NN /\ M e. NN ) -> seq M ( + , ( F ` B ) ) e. dom ~~> ) |
| 28 | 2 4 5 13 14 18 23 25 27 | isumle | |- ( ( A C_ B /\ B C_ NN /\ M e. NN ) -> sum_ k e. ( ZZ>= ` M ) ( ( F ` A ) ` k ) <_ sum_ k e. ( ZZ>= ` M ) ( ( F ` B ) ` k ) ) |