This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pythagtrip . Calculate the square of N . (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pythagtriplem13.1 | |- N = ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) |
|
| Assertion | pythagtriplem14 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( N ^ 2 ) = ( ( C - A ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pythagtriplem13.1 | |- N = ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) |
|
| 2 | 1 | oveq1i | |- ( N ^ 2 ) = ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) |
| 3 | nncn | |- ( C e. NN -> C e. CC ) |
|
| 4 | nncn | |- ( B e. NN -> B e. CC ) |
|
| 5 | addcl | |- ( ( C e. CC /\ B e. CC ) -> ( C + B ) e. CC ) |
|
| 6 | 3 4 5 | syl2anr | |- ( ( B e. NN /\ C e. NN ) -> ( C + B ) e. CC ) |
| 7 | 6 | sqrtcld | |- ( ( B e. NN /\ C e. NN ) -> ( sqrt ` ( C + B ) ) e. CC ) |
| 8 | subcl | |- ( ( C e. CC /\ B e. CC ) -> ( C - B ) e. CC ) |
|
| 9 | 3 4 8 | syl2anr | |- ( ( B e. NN /\ C e. NN ) -> ( C - B ) e. CC ) |
| 10 | 9 | sqrtcld | |- ( ( B e. NN /\ C e. NN ) -> ( sqrt ` ( C - B ) ) e. CC ) |
| 11 | 7 10 | subcld | |- ( ( B e. NN /\ C e. NN ) -> ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) e. CC ) |
| 12 | 11 | 3adant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) e. CC ) |
| 13 | 12 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) e. CC ) |
| 14 | 2cn | |- 2 e. CC |
|
| 15 | 2ne0 | |- 2 =/= 0 |
|
| 16 | sqdiv | |- ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) = ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 ^ 2 ) ) ) |
|
| 17 | 14 15 16 | mp3an23 | |- ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) e. CC -> ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) = ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 ^ 2 ) ) ) |
| 18 | 13 17 | syl | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) = ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 ^ 2 ) ) ) |
| 19 | 14 | sqvali | |- ( 2 ^ 2 ) = ( 2 x. 2 ) |
| 20 | 19 | oveq2i | |- ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 ^ 2 ) ) = ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 x. 2 ) ) |
| 21 | 13 | sqcld | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) e. CC ) |
| 22 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 23 | divdiv1 | |- ( ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / 2 ) / 2 ) = ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 x. 2 ) ) ) |
|
| 24 | 22 22 23 | mp3an23 | |- ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) e. CC -> ( ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / 2 ) / 2 ) = ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 x. 2 ) ) ) |
| 25 | 21 24 | syl | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / 2 ) / 2 ) = ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 x. 2 ) ) ) |
| 26 | simp12 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> B e. NN ) |
|
| 27 | simp13 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> C e. NN ) |
|
| 28 | 26 27 7 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C + B ) ) e. CC ) |
| 29 | 26 27 10 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C - B ) ) e. CC ) |
| 30 | binom2sub | |- ( ( ( sqrt ` ( C + B ) ) e. CC /\ ( sqrt ` ( C - B ) ) e. CC ) -> ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) = ( ( ( ( sqrt ` ( C + B ) ) ^ 2 ) - ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) + ( ( sqrt ` ( C - B ) ) ^ 2 ) ) ) |
|
| 31 | 28 29 30 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) = ( ( ( ( sqrt ` ( C + B ) ) ^ 2 ) - ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) + ( ( sqrt ` ( C - B ) ) ^ 2 ) ) ) |
| 32 | nnre | |- ( C e. NN -> C e. RR ) |
|
| 33 | nnre | |- ( B e. NN -> B e. RR ) |
|
| 34 | readdcl | |- ( ( C e. RR /\ B e. RR ) -> ( C + B ) e. RR ) |
|
| 35 | 32 33 34 | syl2anr | |- ( ( B e. NN /\ C e. NN ) -> ( C + B ) e. RR ) |
| 36 | 35 | 3adant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + B ) e. RR ) |
| 37 | 36 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) e. RR ) |
| 38 | 37 | recnd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) e. CC ) |
| 39 | resubcl | |- ( ( C e. RR /\ B e. RR ) -> ( C - B ) e. RR ) |
|
| 40 | 32 33 39 | syl2anr | |- ( ( B e. NN /\ C e. NN ) -> ( C - B ) e. RR ) |
| 41 | 40 | 3adant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C - B ) e. RR ) |
| 42 | 41 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - B ) e. RR ) |
| 43 | 42 | recnd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - B ) e. CC ) |
| 44 | 7 | 3adant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( sqrt ` ( C + B ) ) e. CC ) |
| 45 | 10 | 3adant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( sqrt ` ( C - B ) ) e. CC ) |
| 46 | 44 45 | mulcld | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) e. CC ) |
| 47 | mulcl | |- ( ( 2 e. CC /\ ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) e. CC ) -> ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) e. CC ) |
|
| 48 | 14 46 47 | sylancr | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) e. CC ) |
| 49 | 48 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) e. CC ) |
| 50 | 38 43 49 | addsubd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C + B ) + ( C - B ) ) - ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) = ( ( ( C + B ) - ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) + ( C - B ) ) ) |
| 51 | 27 | nncnd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> C e. CC ) |
| 52 | simp11 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A e. NN ) |
|
| 53 | 52 | nncnd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A e. CC ) |
| 54 | subdi | |- ( ( 2 e. CC /\ C e. CC /\ A e. CC ) -> ( 2 x. ( C - A ) ) = ( ( 2 x. C ) - ( 2 x. A ) ) ) |
|
| 55 | 14 51 53 54 | mp3an2i | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. ( C - A ) ) = ( ( 2 x. C ) - ( 2 x. A ) ) ) |
| 56 | ppncan | |- ( ( C e. CC /\ B e. CC /\ C e. CC ) -> ( ( C + B ) + ( C - B ) ) = ( C + C ) ) |
|
| 57 | 56 | 3anidm13 | |- ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) + ( C - B ) ) = ( C + C ) ) |
| 58 | 2times | |- ( C e. CC -> ( 2 x. C ) = ( C + C ) ) |
|
| 59 | 58 | adantr | |- ( ( C e. CC /\ B e. CC ) -> ( 2 x. C ) = ( C + C ) ) |
| 60 | 57 59 | eqtr4d | |- ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) + ( C - B ) ) = ( 2 x. C ) ) |
| 61 | 3 4 60 | syl2anr | |- ( ( B e. NN /\ C e. NN ) -> ( ( C + B ) + ( C - B ) ) = ( 2 x. C ) ) |
| 62 | 61 | 3adant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( C + B ) + ( C - B ) ) = ( 2 x. C ) ) |
| 63 | 62 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C + B ) + ( C - B ) ) = ( 2 x. C ) ) |
| 64 | 26 | nncnd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> B e. CC ) |
| 65 | subsq | |- ( ( C e. CC /\ B e. CC ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( ( C + B ) x. ( C - B ) ) ) |
|
| 66 | 51 64 65 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( ( C + B ) x. ( C - B ) ) ) |
| 67 | oveq1 | |- ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( ( C ^ 2 ) - ( B ^ 2 ) ) ) |
|
| 68 | 67 | 3ad2ant2 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( ( C ^ 2 ) - ( B ^ 2 ) ) ) |
| 69 | nncn | |- ( A e. NN -> A e. CC ) |
|
| 70 | 69 | sqcld | |- ( A e. NN -> ( A ^ 2 ) e. CC ) |
| 71 | 70 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( A ^ 2 ) e. CC ) |
| 72 | 4 | sqcld | |- ( B e. NN -> ( B ^ 2 ) e. CC ) |
| 73 | 72 | 3ad2ant2 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( B ^ 2 ) e. CC ) |
| 74 | 71 73 | pncand | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( A ^ 2 ) ) |
| 75 | 74 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( A ^ 2 ) ) |
| 76 | 68 75 | eqtr3d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( A ^ 2 ) ) |
| 77 | 66 76 | eqtr3d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C + B ) x. ( C - B ) ) = ( A ^ 2 ) ) |
| 78 | 77 | fveq2d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( ( C + B ) x. ( C - B ) ) ) = ( sqrt ` ( A ^ 2 ) ) ) |
| 79 | 32 | adantl | |- ( ( B e. NN /\ C e. NN ) -> C e. RR ) |
| 80 | 33 | adantr | |- ( ( B e. NN /\ C e. NN ) -> B e. RR ) |
| 81 | nngt0 | |- ( C e. NN -> 0 < C ) |
|
| 82 | 81 | adantl | |- ( ( B e. NN /\ C e. NN ) -> 0 < C ) |
| 83 | nngt0 | |- ( B e. NN -> 0 < B ) |
|
| 84 | 83 | adantr | |- ( ( B e. NN /\ C e. NN ) -> 0 < B ) |
| 85 | 79 80 82 84 | addgt0d | |- ( ( B e. NN /\ C e. NN ) -> 0 < ( C + B ) ) |
| 86 | 0re | |- 0 e. RR |
|
| 87 | ltle | |- ( ( 0 e. RR /\ ( C + B ) e. RR ) -> ( 0 < ( C + B ) -> 0 <_ ( C + B ) ) ) |
|
| 88 | 86 87 | mpan | |- ( ( C + B ) e. RR -> ( 0 < ( C + B ) -> 0 <_ ( C + B ) ) ) |
| 89 | 35 85 88 | sylc | |- ( ( B e. NN /\ C e. NN ) -> 0 <_ ( C + B ) ) |
| 90 | 89 | 3adant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 <_ ( C + B ) ) |
| 91 | 90 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 <_ ( C + B ) ) |
| 92 | pythagtriplem10 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> 0 < ( C - B ) ) |
|
| 93 | 92 | 3adant3 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 < ( C - B ) ) |
| 94 | ltle | |- ( ( 0 e. RR /\ ( C - B ) e. RR ) -> ( 0 < ( C - B ) -> 0 <_ ( C - B ) ) ) |
|
| 95 | 86 94 | mpan | |- ( ( C - B ) e. RR -> ( 0 < ( C - B ) -> 0 <_ ( C - B ) ) ) |
| 96 | 42 93 95 | sylc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 <_ ( C - B ) ) |
| 97 | 37 91 42 96 | sqrtmuld | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( ( C + B ) x. ( C - B ) ) ) = ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) |
| 98 | 78 97 | eqtr3d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( A ^ 2 ) ) = ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) |
| 99 | nnre | |- ( A e. NN -> A e. RR ) |
|
| 100 | 99 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. RR ) |
| 101 | 100 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A e. RR ) |
| 102 | nnnn0 | |- ( A e. NN -> A e. NN0 ) |
|
| 103 | 102 | nn0ge0d | |- ( A e. NN -> 0 <_ A ) |
| 104 | 103 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 <_ A ) |
| 105 | 104 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 <_ A ) |
| 106 | 101 105 | sqrtsqd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( A ^ 2 ) ) = A ) |
| 107 | 98 106 | eqtr3d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) = A ) |
| 108 | 107 | oveq2d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) = ( 2 x. A ) ) |
| 109 | 63 108 | oveq12d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C + B ) + ( C - B ) ) - ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) = ( ( 2 x. C ) - ( 2 x. A ) ) ) |
| 110 | 55 109 | eqtr4d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. ( C - A ) ) = ( ( ( C + B ) + ( C - B ) ) - ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) ) |
| 111 | resqrtth | |- ( ( ( C + B ) e. RR /\ 0 <_ ( C + B ) ) -> ( ( sqrt ` ( C + B ) ) ^ 2 ) = ( C + B ) ) |
|
| 112 | 37 91 111 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C + B ) ) ^ 2 ) = ( C + B ) ) |
| 113 | 112 | oveq1d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( sqrt ` ( C + B ) ) ^ 2 ) - ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) = ( ( C + B ) - ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) ) |
| 114 | resqrtth | |- ( ( ( C - B ) e. RR /\ 0 <_ ( C - B ) ) -> ( ( sqrt ` ( C - B ) ) ^ 2 ) = ( C - B ) ) |
|
| 115 | 42 96 114 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C - B ) ) ^ 2 ) = ( C - B ) ) |
| 116 | 113 115 | oveq12d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) ^ 2 ) - ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) + ( ( sqrt ` ( C - B ) ) ^ 2 ) ) = ( ( ( C + B ) - ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) + ( C - B ) ) ) |
| 117 | 50 110 116 | 3eqtr4rd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) ^ 2 ) - ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) + ( ( sqrt ` ( C - B ) ) ^ 2 ) ) = ( 2 x. ( C - A ) ) ) |
| 118 | 31 117 | eqtrd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) = ( 2 x. ( C - A ) ) ) |
| 119 | 118 | oveq1d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / 2 ) = ( ( 2 x. ( C - A ) ) / 2 ) ) |
| 120 | subcl | |- ( ( C e. CC /\ A e. CC ) -> ( C - A ) e. CC ) |
|
| 121 | 3 69 120 | syl2anr | |- ( ( A e. NN /\ C e. NN ) -> ( C - A ) e. CC ) |
| 122 | 121 | 3adant2 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C - A ) e. CC ) |
| 123 | 122 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - A ) e. CC ) |
| 124 | divcan3 | |- ( ( ( C - A ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. ( C - A ) ) / 2 ) = ( C - A ) ) |
|
| 125 | 14 15 124 | mp3an23 | |- ( ( C - A ) e. CC -> ( ( 2 x. ( C - A ) ) / 2 ) = ( C - A ) ) |
| 126 | 123 125 | syl | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( 2 x. ( C - A ) ) / 2 ) = ( C - A ) ) |
| 127 | 119 126 | eqtrd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / 2 ) = ( C - A ) ) |
| 128 | 127 | oveq1d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / 2 ) / 2 ) = ( ( C - A ) / 2 ) ) |
| 129 | 25 128 | eqtr3d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 x. 2 ) ) = ( ( C - A ) / 2 ) ) |
| 130 | 20 129 | eqtrid | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 ^ 2 ) ) = ( ( C - A ) / 2 ) ) |
| 131 | 18 130 | eqtrd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) = ( ( C - A ) / 2 ) ) |
| 132 | 2 131 | eqtrid | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( N ^ 2 ) = ( ( C - A ) / 2 ) ) |