This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of squaring over division. (Contributed by Scott Fenton, 7-Jun-2013) (Proof shortened by Mario Carneiro, 9-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqdiv | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) ^ 2 ) = ( ( A ^ 2 ) / ( B ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> A e. CC ) |
|
| 2 | 3simpc | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B e. CC /\ B =/= 0 ) ) |
|
| 3 | divmuldiv | |- ( ( ( A e. CC /\ A e. CC ) /\ ( ( B e. CC /\ B =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) ) -> ( ( A / B ) x. ( A / B ) ) = ( ( A x. A ) / ( B x. B ) ) ) |
|
| 4 | 1 1 2 2 3 | syl22anc | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) x. ( A / B ) ) = ( ( A x. A ) / ( B x. B ) ) ) |
| 5 | divcl | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) e. CC ) |
|
| 6 | sqval | |- ( ( A / B ) e. CC -> ( ( A / B ) ^ 2 ) = ( ( A / B ) x. ( A / B ) ) ) |
|
| 7 | 5 6 | syl | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) ^ 2 ) = ( ( A / B ) x. ( A / B ) ) ) |
| 8 | sqval | |- ( A e. CC -> ( A ^ 2 ) = ( A x. A ) ) |
|
| 9 | sqval | |- ( B e. CC -> ( B ^ 2 ) = ( B x. B ) ) |
|
| 10 | 8 9 | oveqan12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) / ( B ^ 2 ) ) = ( ( A x. A ) / ( B x. B ) ) ) |
| 11 | 10 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A ^ 2 ) / ( B ^ 2 ) ) = ( ( A x. A ) / ( B x. B ) ) ) |
| 12 | 4 7 11 | 3eqtr4d | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) ^ 2 ) = ( ( A ^ 2 ) / ( B ^ 2 ) ) ) |