This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pythagtrip . Show the relationship between M , N , and A . (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pythagtriplem15.1 | |- M = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) |
|
| pythagtriplem15.2 | |- N = ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) |
||
| Assertion | pythagtriplem15 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A = ( ( M ^ 2 ) - ( N ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pythagtriplem15.1 | |- M = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) |
|
| 2 | pythagtriplem15.2 | |- N = ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) |
|
| 3 | 1 | pythagtriplem12 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( M ^ 2 ) = ( ( C + A ) / 2 ) ) |
| 4 | 2 | pythagtriplem14 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( N ^ 2 ) = ( ( C - A ) / 2 ) ) |
| 5 | 3 4 | oveq12d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( M ^ 2 ) - ( N ^ 2 ) ) = ( ( ( C + A ) / 2 ) - ( ( C - A ) / 2 ) ) ) |
| 6 | simp3 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. NN ) |
|
| 7 | simp1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. NN ) |
|
| 8 | 6 7 | nnaddcld | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + A ) e. NN ) |
| 9 | 8 | nncnd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + A ) e. CC ) |
| 10 | 9 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + A ) e. CC ) |
| 11 | nnz | |- ( C e. NN -> C e. ZZ ) |
|
| 12 | 11 | 3ad2ant3 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. ZZ ) |
| 13 | nnz | |- ( A e. NN -> A e. ZZ ) |
|
| 14 | 13 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. ZZ ) |
| 15 | 12 14 | zsubcld | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C - A ) e. ZZ ) |
| 16 | 15 | zcnd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C - A ) e. CC ) |
| 17 | 16 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - A ) e. CC ) |
| 18 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 19 | divsubdir | |- ( ( ( C + A ) e. CC /\ ( C - A ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( C + A ) - ( C - A ) ) / 2 ) = ( ( ( C + A ) / 2 ) - ( ( C - A ) / 2 ) ) ) |
|
| 20 | 18 19 | mp3an3 | |- ( ( ( C + A ) e. CC /\ ( C - A ) e. CC ) -> ( ( ( C + A ) - ( C - A ) ) / 2 ) = ( ( ( C + A ) / 2 ) - ( ( C - A ) / 2 ) ) ) |
| 21 | 10 17 20 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C + A ) - ( C - A ) ) / 2 ) = ( ( ( C + A ) / 2 ) - ( ( C - A ) / 2 ) ) ) |
| 22 | 5 21 | eqtr4d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( M ^ 2 ) - ( N ^ 2 ) ) = ( ( ( C + A ) - ( C - A ) ) / 2 ) ) |
| 23 | nncn | |- ( C e. NN -> C e. CC ) |
|
| 24 | 23 | 3ad2ant3 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. CC ) |
| 25 | 24 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> C e. CC ) |
| 26 | nncn | |- ( A e. NN -> A e. CC ) |
|
| 27 | 26 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. CC ) |
| 28 | 27 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A e. CC ) |
| 29 | 25 28 28 | pnncand | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C + A ) - ( C - A ) ) = ( A + A ) ) |
| 30 | 28 | 2timesd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. A ) = ( A + A ) ) |
| 31 | 29 30 | eqtr4d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C + A ) - ( C - A ) ) = ( 2 x. A ) ) |
| 32 | 31 | oveq1d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C + A ) - ( C - A ) ) / 2 ) = ( ( 2 x. A ) / 2 ) ) |
| 33 | 2cn | |- 2 e. CC |
|
| 34 | 2ne0 | |- 2 =/= 0 |
|
| 35 | divcan3 | |- ( ( A e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. A ) / 2 ) = A ) |
|
| 36 | 33 34 35 | mp3an23 | |- ( A e. CC -> ( ( 2 x. A ) / 2 ) = A ) |
| 37 | 28 36 | syl | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( 2 x. A ) / 2 ) = A ) |
| 38 | 22 32 37 | 3eqtrrd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A = ( ( M ^ 2 ) - ( N ^ 2 ) ) ) |