This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division into a fraction. (Contributed by NM, 31-Dec-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divdiv1 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / B ) / C ) = ( A / ( B x. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | |- 1 e. CC |
|
| 2 | ax-1ne0 | |- 1 =/= 0 |
|
| 3 | 1 2 | pm3.2i | |- ( 1 e. CC /\ 1 =/= 0 ) |
| 4 | divdivdiv | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( 1 e. CC /\ 1 =/= 0 ) ) ) -> ( ( A / B ) / ( C / 1 ) ) = ( ( A x. 1 ) / ( B x. C ) ) ) |
|
| 5 | 3 4 | mpanr2 | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / B ) / ( C / 1 ) ) = ( ( A x. 1 ) / ( B x. C ) ) ) |
| 6 | 5 | 3impa | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / B ) / ( C / 1 ) ) = ( ( A x. 1 ) / ( B x. C ) ) ) |
| 7 | div1 | |- ( C e. CC -> ( C / 1 ) = C ) |
|
| 8 | 7 | oveq2d | |- ( C e. CC -> ( ( A / B ) / ( C / 1 ) ) = ( ( A / B ) / C ) ) |
| 9 | 8 | ad2antrl | |- ( ( ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / B ) / ( C / 1 ) ) = ( ( A / B ) / C ) ) |
| 10 | 9 | 3adant1 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / B ) / ( C / 1 ) ) = ( ( A / B ) / C ) ) |
| 11 | mulrid | |- ( A e. CC -> ( A x. 1 ) = A ) |
|
| 12 | 11 | oveq1d | |- ( A e. CC -> ( ( A x. 1 ) / ( B x. C ) ) = ( A / ( B x. C ) ) ) |
| 13 | 12 | 3ad2ant1 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. 1 ) / ( B x. C ) ) = ( A / ( B x. C ) ) ) |
| 14 | 6 10 13 | 3eqtr3d | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / B ) / C ) = ( A / ( B x. C ) ) ) |