This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pythagtrip . Calculate the square of N . (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pythagtriplem13.1 | ⊢ 𝑁 = ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) | |
| Assertion | pythagtriplem14 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝑁 ↑ 2 ) = ( ( 𝐶 − 𝐴 ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pythagtriplem13.1 | ⊢ 𝑁 = ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) | |
| 2 | 1 | oveq1i | ⊢ ( 𝑁 ↑ 2 ) = ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ↑ 2 ) |
| 3 | nncn | ⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℂ ) | |
| 4 | nncn | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) | |
| 5 | addcl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐶 + 𝐵 ) ∈ ℂ ) | |
| 6 | 3 4 5 | syl2anr | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 + 𝐵 ) ∈ ℂ ) |
| 7 | 6 | sqrtcld | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( √ ‘ ( 𝐶 + 𝐵 ) ) ∈ ℂ ) |
| 8 | subcl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐶 − 𝐵 ) ∈ ℂ ) | |
| 9 | 3 4 8 | syl2anr | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 − 𝐵 ) ∈ ℂ ) |
| 10 | 9 | sqrtcld | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( √ ‘ ( 𝐶 − 𝐵 ) ) ∈ ℂ ) |
| 11 | 7 10 | subcld | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ∈ ℂ ) |
| 12 | 11 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ∈ ℂ ) |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ∈ ℂ ) |
| 14 | 2cn | ⊢ 2 ∈ ℂ | |
| 15 | 2ne0 | ⊢ 2 ≠ 0 | |
| 16 | sqdiv | ⊢ ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ↑ 2 ) = ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↑ 2 ) / ( 2 ↑ 2 ) ) ) | |
| 17 | 14 15 16 | mp3an23 | ⊢ ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ∈ ℂ → ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ↑ 2 ) = ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↑ 2 ) / ( 2 ↑ 2 ) ) ) |
| 18 | 13 17 | syl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ↑ 2 ) = ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↑ 2 ) / ( 2 ↑ 2 ) ) ) |
| 19 | 14 | sqvali | ⊢ ( 2 ↑ 2 ) = ( 2 · 2 ) |
| 20 | 19 | oveq2i | ⊢ ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↑ 2 ) / ( 2 ↑ 2 ) ) = ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↑ 2 ) / ( 2 · 2 ) ) |
| 21 | 13 | sqcld | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↑ 2 ) ∈ ℂ ) |
| 22 | 2cnne0 | ⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) | |
| 23 | divdiv1 | ⊢ ( ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↑ 2 ) ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↑ 2 ) / 2 ) / 2 ) = ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↑ 2 ) / ( 2 · 2 ) ) ) | |
| 24 | 22 22 23 | mp3an23 | ⊢ ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↑ 2 ) ∈ ℂ → ( ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↑ 2 ) / 2 ) / 2 ) = ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↑ 2 ) / ( 2 · 2 ) ) ) |
| 25 | 21 24 | syl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↑ 2 ) / 2 ) / 2 ) = ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↑ 2 ) / ( 2 · 2 ) ) ) |
| 26 | simp12 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐵 ∈ ℕ ) | |
| 27 | simp13 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐶 ∈ ℕ ) | |
| 28 | 26 27 7 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( 𝐶 + 𝐵 ) ) ∈ ℂ ) |
| 29 | 26 27 10 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( 𝐶 − 𝐵 ) ) ∈ ℂ ) |
| 30 | binom2sub | ⊢ ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) ∈ ℂ ∧ ( √ ‘ ( 𝐶 − 𝐵 ) ) ∈ ℂ ) → ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↑ 2 ) = ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) ↑ 2 ) − ( 2 · ( ( √ ‘ ( 𝐶 + 𝐵 ) ) · ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ) ) + ( ( √ ‘ ( 𝐶 − 𝐵 ) ) ↑ 2 ) ) ) | |
| 31 | 28 29 30 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↑ 2 ) = ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) ↑ 2 ) − ( 2 · ( ( √ ‘ ( 𝐶 + 𝐵 ) ) · ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ) ) + ( ( √ ‘ ( 𝐶 − 𝐵 ) ) ↑ 2 ) ) ) |
| 32 | nnre | ⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℝ ) | |
| 33 | nnre | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ ) | |
| 34 | readdcl | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 + 𝐵 ) ∈ ℝ ) | |
| 35 | 32 33 34 | syl2anr | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 + 𝐵 ) ∈ ℝ ) |
| 36 | 35 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 + 𝐵 ) ∈ ℝ ) |
| 37 | 36 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐶 + 𝐵 ) ∈ ℝ ) |
| 38 | 37 | recnd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐶 + 𝐵 ) ∈ ℂ ) |
| 39 | resubcl | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 − 𝐵 ) ∈ ℝ ) | |
| 40 | 32 33 39 | syl2anr | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 − 𝐵 ) ∈ ℝ ) |
| 41 | 40 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 − 𝐵 ) ∈ ℝ ) |
| 42 | 41 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐶 − 𝐵 ) ∈ ℝ ) |
| 43 | 42 | recnd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐶 − 𝐵 ) ∈ ℂ ) |
| 44 | 7 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( √ ‘ ( 𝐶 + 𝐵 ) ) ∈ ℂ ) |
| 45 | 10 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( √ ‘ ( 𝐶 − 𝐵 ) ) ∈ ℂ ) |
| 46 | 44 45 | mulcld | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( √ ‘ ( 𝐶 + 𝐵 ) ) · ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ∈ ℂ ) |
| 47 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ ( ( √ ‘ ( 𝐶 + 𝐵 ) ) · ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ∈ ℂ ) → ( 2 · ( ( √ ‘ ( 𝐶 + 𝐵 ) ) · ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ) ∈ ℂ ) | |
| 48 | 14 46 47 | sylancr | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 2 · ( ( √ ‘ ( 𝐶 + 𝐵 ) ) · ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ) ∈ ℂ ) |
| 49 | 48 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 2 · ( ( √ ‘ ( 𝐶 + 𝐵 ) ) · ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ) ∈ ℂ ) |
| 50 | 38 43 49 | addsubd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( 𝐶 + 𝐵 ) + ( 𝐶 − 𝐵 ) ) − ( 2 · ( ( √ ‘ ( 𝐶 + 𝐵 ) ) · ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ) ) = ( ( ( 𝐶 + 𝐵 ) − ( 2 · ( ( √ ‘ ( 𝐶 + 𝐵 ) ) · ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ) ) + ( 𝐶 − 𝐵 ) ) ) |
| 51 | 27 | nncnd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐶 ∈ ℂ ) |
| 52 | simp11 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐴 ∈ ℕ ) | |
| 53 | 52 | nncnd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐴 ∈ ℂ ) |
| 54 | subdi | ⊢ ( ( 2 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 2 · ( 𝐶 − 𝐴 ) ) = ( ( 2 · 𝐶 ) − ( 2 · 𝐴 ) ) ) | |
| 55 | 14 51 53 54 | mp3an2i | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 2 · ( 𝐶 − 𝐴 ) ) = ( ( 2 · 𝐶 ) − ( 2 · 𝐴 ) ) ) |
| 56 | ppncan | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐶 + 𝐵 ) + ( 𝐶 − 𝐵 ) ) = ( 𝐶 + 𝐶 ) ) | |
| 57 | 56 | 3anidm13 | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐶 + 𝐵 ) + ( 𝐶 − 𝐵 ) ) = ( 𝐶 + 𝐶 ) ) |
| 58 | 2times | ⊢ ( 𝐶 ∈ ℂ → ( 2 · 𝐶 ) = ( 𝐶 + 𝐶 ) ) | |
| 59 | 58 | adantr | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · 𝐶 ) = ( 𝐶 + 𝐶 ) ) |
| 60 | 57 59 | eqtr4d | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐶 + 𝐵 ) + ( 𝐶 − 𝐵 ) ) = ( 2 · 𝐶 ) ) |
| 61 | 3 4 60 | syl2anr | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐶 + 𝐵 ) + ( 𝐶 − 𝐵 ) ) = ( 2 · 𝐶 ) ) |
| 62 | 61 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐶 + 𝐵 ) + ( 𝐶 − 𝐵 ) ) = ( 2 · 𝐶 ) ) |
| 63 | 62 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 + 𝐵 ) + ( 𝐶 − 𝐵 ) ) = ( 2 · 𝐶 ) ) |
| 64 | 26 | nncnd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐵 ∈ ℂ ) |
| 65 | subsq | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐶 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = ( ( 𝐶 + 𝐵 ) · ( 𝐶 − 𝐵 ) ) ) | |
| 66 | 51 64 65 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = ( ( 𝐶 + 𝐵 ) · ( 𝐶 − 𝐵 ) ) ) |
| 67 | oveq1 | ⊢ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( 𝐵 ↑ 2 ) ) = ( ( 𝐶 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) | |
| 68 | 67 | 3ad2ant2 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( 𝐵 ↑ 2 ) ) = ( ( 𝐶 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) |
| 69 | nncn | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) | |
| 70 | 69 | sqcld | ⊢ ( 𝐴 ∈ ℕ → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 71 | 70 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 72 | 4 | sqcld | ⊢ ( 𝐵 ∈ ℕ → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 73 | 72 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 74 | 71 73 | pncand | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( 𝐵 ↑ 2 ) ) = ( 𝐴 ↑ 2 ) ) |
| 75 | 74 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( 𝐵 ↑ 2 ) ) = ( 𝐴 ↑ 2 ) ) |
| 76 | 68 75 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = ( 𝐴 ↑ 2 ) ) |
| 77 | 66 76 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 + 𝐵 ) · ( 𝐶 − 𝐵 ) ) = ( 𝐴 ↑ 2 ) ) |
| 78 | 77 | fveq2d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( ( 𝐶 + 𝐵 ) · ( 𝐶 − 𝐵 ) ) ) = ( √ ‘ ( 𝐴 ↑ 2 ) ) ) |
| 79 | 32 | adantl | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐶 ∈ ℝ ) |
| 80 | 33 | adantr | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐵 ∈ ℝ ) |
| 81 | nngt0 | ⊢ ( 𝐶 ∈ ℕ → 0 < 𝐶 ) | |
| 82 | 81 | adantl | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 0 < 𝐶 ) |
| 83 | nngt0 | ⊢ ( 𝐵 ∈ ℕ → 0 < 𝐵 ) | |
| 84 | 83 | adantr | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 0 < 𝐵 ) |
| 85 | 79 80 82 84 | addgt0d | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 0 < ( 𝐶 + 𝐵 ) ) |
| 86 | 0re | ⊢ 0 ∈ ℝ | |
| 87 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ ( 𝐶 + 𝐵 ) ∈ ℝ ) → ( 0 < ( 𝐶 + 𝐵 ) → 0 ≤ ( 𝐶 + 𝐵 ) ) ) | |
| 88 | 86 87 | mpan | ⊢ ( ( 𝐶 + 𝐵 ) ∈ ℝ → ( 0 < ( 𝐶 + 𝐵 ) → 0 ≤ ( 𝐶 + 𝐵 ) ) ) |
| 89 | 35 85 88 | sylc | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 0 ≤ ( 𝐶 + 𝐵 ) ) |
| 90 | 89 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 0 ≤ ( 𝐶 + 𝐵 ) ) |
| 91 | 90 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 0 ≤ ( 𝐶 + 𝐵 ) ) |
| 92 | pythagtriplem10 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → 0 < ( 𝐶 − 𝐵 ) ) | |
| 93 | 92 | 3adant3 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 0 < ( 𝐶 − 𝐵 ) ) |
| 94 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ ( 𝐶 − 𝐵 ) ∈ ℝ ) → ( 0 < ( 𝐶 − 𝐵 ) → 0 ≤ ( 𝐶 − 𝐵 ) ) ) | |
| 95 | 86 94 | mpan | ⊢ ( ( 𝐶 − 𝐵 ) ∈ ℝ → ( 0 < ( 𝐶 − 𝐵 ) → 0 ≤ ( 𝐶 − 𝐵 ) ) ) |
| 96 | 42 93 95 | sylc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 0 ≤ ( 𝐶 − 𝐵 ) ) |
| 97 | 37 91 42 96 | sqrtmuld | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( ( 𝐶 + 𝐵 ) · ( 𝐶 − 𝐵 ) ) ) = ( ( √ ‘ ( 𝐶 + 𝐵 ) ) · ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ) |
| 98 | 78 97 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( 𝐴 ↑ 2 ) ) = ( ( √ ‘ ( 𝐶 + 𝐵 ) ) · ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ) |
| 99 | nnre | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) | |
| 100 | 99 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
| 101 | 100 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐴 ∈ ℝ ) |
| 102 | nnnn0 | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℕ0 ) | |
| 103 | 102 | nn0ge0d | ⊢ ( 𝐴 ∈ ℕ → 0 ≤ 𝐴 ) |
| 104 | 103 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 0 ≤ 𝐴 ) |
| 105 | 104 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 0 ≤ 𝐴 ) |
| 106 | 101 105 | sqrtsqd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( 𝐴 ↑ 2 ) ) = 𝐴 ) |
| 107 | 98 106 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( √ ‘ ( 𝐶 + 𝐵 ) ) · ( √ ‘ ( 𝐶 − 𝐵 ) ) ) = 𝐴 ) |
| 108 | 107 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 2 · ( ( √ ‘ ( 𝐶 + 𝐵 ) ) · ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ) = ( 2 · 𝐴 ) ) |
| 109 | 63 108 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( 𝐶 + 𝐵 ) + ( 𝐶 − 𝐵 ) ) − ( 2 · ( ( √ ‘ ( 𝐶 + 𝐵 ) ) · ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ) ) = ( ( 2 · 𝐶 ) − ( 2 · 𝐴 ) ) ) |
| 110 | 55 109 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 2 · ( 𝐶 − 𝐴 ) ) = ( ( ( 𝐶 + 𝐵 ) + ( 𝐶 − 𝐵 ) ) − ( 2 · ( ( √ ‘ ( 𝐶 + 𝐵 ) ) · ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ) ) ) |
| 111 | resqrtth | ⊢ ( ( ( 𝐶 + 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐶 + 𝐵 ) ) → ( ( √ ‘ ( 𝐶 + 𝐵 ) ) ↑ 2 ) = ( 𝐶 + 𝐵 ) ) | |
| 112 | 37 91 111 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( √ ‘ ( 𝐶 + 𝐵 ) ) ↑ 2 ) = ( 𝐶 + 𝐵 ) ) |
| 113 | 112 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) ↑ 2 ) − ( 2 · ( ( √ ‘ ( 𝐶 + 𝐵 ) ) · ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ) ) = ( ( 𝐶 + 𝐵 ) − ( 2 · ( ( √ ‘ ( 𝐶 + 𝐵 ) ) · ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ) ) ) |
| 114 | resqrtth | ⊢ ( ( ( 𝐶 − 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐶 − 𝐵 ) ) → ( ( √ ‘ ( 𝐶 − 𝐵 ) ) ↑ 2 ) = ( 𝐶 − 𝐵 ) ) | |
| 115 | 42 96 114 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( √ ‘ ( 𝐶 − 𝐵 ) ) ↑ 2 ) = ( 𝐶 − 𝐵 ) ) |
| 116 | 113 115 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) ↑ 2 ) − ( 2 · ( ( √ ‘ ( 𝐶 + 𝐵 ) ) · ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ) ) + ( ( √ ‘ ( 𝐶 − 𝐵 ) ) ↑ 2 ) ) = ( ( ( 𝐶 + 𝐵 ) − ( 2 · ( ( √ ‘ ( 𝐶 + 𝐵 ) ) · ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ) ) + ( 𝐶 − 𝐵 ) ) ) |
| 117 | 50 110 116 | 3eqtr4rd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) ↑ 2 ) − ( 2 · ( ( √ ‘ ( 𝐶 + 𝐵 ) ) · ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ) ) + ( ( √ ‘ ( 𝐶 − 𝐵 ) ) ↑ 2 ) ) = ( 2 · ( 𝐶 − 𝐴 ) ) ) |
| 118 | 31 117 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↑ 2 ) = ( 2 · ( 𝐶 − 𝐴 ) ) ) |
| 119 | 118 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↑ 2 ) / 2 ) = ( ( 2 · ( 𝐶 − 𝐴 ) ) / 2 ) ) |
| 120 | subcl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐶 − 𝐴 ) ∈ ℂ ) | |
| 121 | 3 69 120 | syl2anr | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 − 𝐴 ) ∈ ℂ ) |
| 122 | 121 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 − 𝐴 ) ∈ ℂ ) |
| 123 | 122 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐶 − 𝐴 ) ∈ ℂ ) |
| 124 | divcan3 | ⊢ ( ( ( 𝐶 − 𝐴 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( ( 2 · ( 𝐶 − 𝐴 ) ) / 2 ) = ( 𝐶 − 𝐴 ) ) | |
| 125 | 14 15 124 | mp3an23 | ⊢ ( ( 𝐶 − 𝐴 ) ∈ ℂ → ( ( 2 · ( 𝐶 − 𝐴 ) ) / 2 ) = ( 𝐶 − 𝐴 ) ) |
| 126 | 123 125 | syl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 2 · ( 𝐶 − 𝐴 ) ) / 2 ) = ( 𝐶 − 𝐴 ) ) |
| 127 | 119 126 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↑ 2 ) / 2 ) = ( 𝐶 − 𝐴 ) ) |
| 128 | 127 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↑ 2 ) / 2 ) / 2 ) = ( ( 𝐶 − 𝐴 ) / 2 ) ) |
| 129 | 25 128 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↑ 2 ) / ( 2 · 2 ) ) = ( ( 𝐶 − 𝐴 ) / 2 ) ) |
| 130 | 20 129 | eqtrid | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↑ 2 ) / ( 2 ↑ 2 ) ) = ( ( 𝐶 − 𝐴 ) / 2 ) ) |
| 131 | 18 130 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ↑ 2 ) = ( ( 𝐶 − 𝐴 ) / 2 ) ) |
| 132 | 2 131 | eqtrid | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝑁 ↑ 2 ) = ( ( 𝐶 − 𝐴 ) / 2 ) ) |