This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expand the square of a subtraction. (Contributed by Scott Fenton, 10-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | binom2sub | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) ^ 2 ) = ( ( ( A ^ 2 ) - ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl | |- ( B e. CC -> -u B e. CC ) |
|
| 2 | binom2 | |- ( ( A e. CC /\ -u B e. CC ) -> ( ( A + -u B ) ^ 2 ) = ( ( ( A ^ 2 ) + ( 2 x. ( A x. -u B ) ) ) + ( -u B ^ 2 ) ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + -u B ) ^ 2 ) = ( ( ( A ^ 2 ) + ( 2 x. ( A x. -u B ) ) ) + ( -u B ^ 2 ) ) ) |
| 4 | negsub | |- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |
|
| 5 | 4 | oveq1d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + -u B ) ^ 2 ) = ( ( A - B ) ^ 2 ) ) |
| 6 | 3 5 | eqtr3d | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( A ^ 2 ) + ( 2 x. ( A x. -u B ) ) ) + ( -u B ^ 2 ) ) = ( ( A - B ) ^ 2 ) ) |
| 7 | mulneg2 | |- ( ( A e. CC /\ B e. CC ) -> ( A x. -u B ) = -u ( A x. B ) ) |
|
| 8 | 7 | oveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( A x. -u B ) ) = ( 2 x. -u ( A x. B ) ) ) |
| 9 | 2cn | |- 2 e. CC |
|
| 10 | mulcl | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) |
|
| 11 | mulneg2 | |- ( ( 2 e. CC /\ ( A x. B ) e. CC ) -> ( 2 x. -u ( A x. B ) ) = -u ( 2 x. ( A x. B ) ) ) |
|
| 12 | 9 10 11 | sylancr | |- ( ( A e. CC /\ B e. CC ) -> ( 2 x. -u ( A x. B ) ) = -u ( 2 x. ( A x. B ) ) ) |
| 13 | 8 12 | eqtr2d | |- ( ( A e. CC /\ B e. CC ) -> -u ( 2 x. ( A x. B ) ) = ( 2 x. ( A x. -u B ) ) ) |
| 14 | 13 | oveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) + -u ( 2 x. ( A x. B ) ) ) = ( ( A ^ 2 ) + ( 2 x. ( A x. -u B ) ) ) ) |
| 15 | sqcl | |- ( A e. CC -> ( A ^ 2 ) e. CC ) |
|
| 16 | 15 | adantr | |- ( ( A e. CC /\ B e. CC ) -> ( A ^ 2 ) e. CC ) |
| 17 | mulcl | |- ( ( 2 e. CC /\ ( A x. B ) e. CC ) -> ( 2 x. ( A x. B ) ) e. CC ) |
|
| 18 | 9 10 17 | sylancr | |- ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( A x. B ) ) e. CC ) |
| 19 | 16 18 | negsubd | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) + -u ( 2 x. ( A x. B ) ) ) = ( ( A ^ 2 ) - ( 2 x. ( A x. B ) ) ) ) |
| 20 | 14 19 | eqtr3d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) + ( 2 x. ( A x. -u B ) ) ) = ( ( A ^ 2 ) - ( 2 x. ( A x. B ) ) ) ) |
| 21 | sqneg | |- ( B e. CC -> ( -u B ^ 2 ) = ( B ^ 2 ) ) |
|
| 22 | 21 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( -u B ^ 2 ) = ( B ^ 2 ) ) |
| 23 | 20 22 | oveq12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( A ^ 2 ) + ( 2 x. ( A x. -u B ) ) ) + ( -u B ^ 2 ) ) = ( ( ( A ^ 2 ) - ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) ) |
| 24 | 6 23 | eqtr3d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) ^ 2 ) = ( ( ( A ^ 2 ) - ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) ) |