This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer a reverse distributive law to the function operation. (Contributed by NM, 19-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caofdi.1 | |- ( ph -> A e. V ) |
|
| caofdi.2 | |- ( ph -> F : A --> K ) |
||
| caofdi.3 | |- ( ph -> G : A --> S ) |
||
| caofdi.4 | |- ( ph -> H : A --> S ) |
||
| caofdir.5 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. K ) ) -> ( ( x R y ) T z ) = ( ( x T z ) O ( y T z ) ) ) |
||
| Assertion | caofdir | |- ( ph -> ( ( G oF R H ) oF T F ) = ( ( G oF T F ) oF O ( H oF T F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofdi.1 | |- ( ph -> A e. V ) |
|
| 2 | caofdi.2 | |- ( ph -> F : A --> K ) |
|
| 3 | caofdi.3 | |- ( ph -> G : A --> S ) |
|
| 4 | caofdi.4 | |- ( ph -> H : A --> S ) |
|
| 5 | caofdir.5 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. K ) ) -> ( ( x R y ) T z ) = ( ( x T z ) O ( y T z ) ) ) |
|
| 6 | 5 | adantlr | |- ( ( ( ph /\ w e. A ) /\ ( x e. S /\ y e. S /\ z e. K ) ) -> ( ( x R y ) T z ) = ( ( x T z ) O ( y T z ) ) ) |
| 7 | 3 | ffvelcdmda | |- ( ( ph /\ w e. A ) -> ( G ` w ) e. S ) |
| 8 | 4 | ffvelcdmda | |- ( ( ph /\ w e. A ) -> ( H ` w ) e. S ) |
| 9 | 2 | ffvelcdmda | |- ( ( ph /\ w e. A ) -> ( F ` w ) e. K ) |
| 10 | 6 7 8 9 | caovdird | |- ( ( ph /\ w e. A ) -> ( ( ( G ` w ) R ( H ` w ) ) T ( F ` w ) ) = ( ( ( G ` w ) T ( F ` w ) ) O ( ( H ` w ) T ( F ` w ) ) ) ) |
| 11 | 10 | mpteq2dva | |- ( ph -> ( w e. A |-> ( ( ( G ` w ) R ( H ` w ) ) T ( F ` w ) ) ) = ( w e. A |-> ( ( ( G ` w ) T ( F ` w ) ) O ( ( H ` w ) T ( F ` w ) ) ) ) ) |
| 12 | ovexd | |- ( ( ph /\ w e. A ) -> ( ( G ` w ) R ( H ` w ) ) e. _V ) |
|
| 13 | 3 | feqmptd | |- ( ph -> G = ( w e. A |-> ( G ` w ) ) ) |
| 14 | 4 | feqmptd | |- ( ph -> H = ( w e. A |-> ( H ` w ) ) ) |
| 15 | 1 7 8 13 14 | offval2 | |- ( ph -> ( G oF R H ) = ( w e. A |-> ( ( G ` w ) R ( H ` w ) ) ) ) |
| 16 | 2 | feqmptd | |- ( ph -> F = ( w e. A |-> ( F ` w ) ) ) |
| 17 | 1 12 9 15 16 | offval2 | |- ( ph -> ( ( G oF R H ) oF T F ) = ( w e. A |-> ( ( ( G ` w ) R ( H ` w ) ) T ( F ` w ) ) ) ) |
| 18 | ovexd | |- ( ( ph /\ w e. A ) -> ( ( G ` w ) T ( F ` w ) ) e. _V ) |
|
| 19 | ovexd | |- ( ( ph /\ w e. A ) -> ( ( H ` w ) T ( F ` w ) ) e. _V ) |
|
| 20 | 1 7 9 13 16 | offval2 | |- ( ph -> ( G oF T F ) = ( w e. A |-> ( ( G ` w ) T ( F ` w ) ) ) ) |
| 21 | 1 8 9 14 16 | offval2 | |- ( ph -> ( H oF T F ) = ( w e. A |-> ( ( H ` w ) T ( F ` w ) ) ) ) |
| 22 | 1 18 19 20 21 | offval2 | |- ( ph -> ( ( G oF T F ) oF O ( H oF T F ) ) = ( w e. A |-> ( ( ( G ` w ) T ( F ` w ) ) O ( ( H ` w ) T ( F ` w ) ) ) ) ) |
| 23 | 11 17 22 | 3eqtr4d | |- ( ph -> ( ( G oF R H ) oF T F ) = ( ( G oF T F ) oF O ( H oF T F ) ) ) |