This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer a left identity law to the function operation. (Contributed by NM, 21-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caofref.1 | |- ( ph -> A e. V ) |
|
| caofref.2 | |- ( ph -> F : A --> S ) |
||
| caofid0.3 | |- ( ph -> B e. W ) |
||
| caofid0l.5 | |- ( ( ph /\ x e. S ) -> ( B R x ) = x ) |
||
| Assertion | caofid0l | |- ( ph -> ( ( A X. { B } ) oF R F ) = F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofref.1 | |- ( ph -> A e. V ) |
|
| 2 | caofref.2 | |- ( ph -> F : A --> S ) |
|
| 3 | caofid0.3 | |- ( ph -> B e. W ) |
|
| 4 | caofid0l.5 | |- ( ( ph /\ x e. S ) -> ( B R x ) = x ) |
|
| 5 | fnconstg | |- ( B e. W -> ( A X. { B } ) Fn A ) |
|
| 6 | 3 5 | syl | |- ( ph -> ( A X. { B } ) Fn A ) |
| 7 | 2 | ffnd | |- ( ph -> F Fn A ) |
| 8 | fvconst2g | |- ( ( B e. W /\ w e. A ) -> ( ( A X. { B } ) ` w ) = B ) |
|
| 9 | 3 8 | sylan | |- ( ( ph /\ w e. A ) -> ( ( A X. { B } ) ` w ) = B ) |
| 10 | eqidd | |- ( ( ph /\ w e. A ) -> ( F ` w ) = ( F ` w ) ) |
|
| 11 | 4 | ralrimiva | |- ( ph -> A. x e. S ( B R x ) = x ) |
| 12 | 2 | ffvelcdmda | |- ( ( ph /\ w e. A ) -> ( F ` w ) e. S ) |
| 13 | oveq2 | |- ( x = ( F ` w ) -> ( B R x ) = ( B R ( F ` w ) ) ) |
|
| 14 | id | |- ( x = ( F ` w ) -> x = ( F ` w ) ) |
|
| 15 | 13 14 | eqeq12d | |- ( x = ( F ` w ) -> ( ( B R x ) = x <-> ( B R ( F ` w ) ) = ( F ` w ) ) ) |
| 16 | 15 | rspccva | |- ( ( A. x e. S ( B R x ) = x /\ ( F ` w ) e. S ) -> ( B R ( F ` w ) ) = ( F ` w ) ) |
| 17 | 11 12 16 | syl2an2r | |- ( ( ph /\ w e. A ) -> ( B R ( F ` w ) ) = ( F ` w ) ) |
| 18 | 1 6 7 7 9 10 17 | offveq | |- ( ph -> ( ( A X. { B } ) oF R F ) = F ) |