This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the power series scalar multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrvscacl.s | |- S = ( I mPwSer R ) |
|
| psrvscacl.n | |- .x. = ( .s ` S ) |
||
| psrvscacl.k | |- K = ( Base ` R ) |
||
| psrvscacl.b | |- B = ( Base ` S ) |
||
| psrvscacl.r | |- ( ph -> R e. Ring ) |
||
| psrvscacl.x | |- ( ph -> X e. K ) |
||
| psrvscacl.y | |- ( ph -> F e. B ) |
||
| Assertion | psrvscacl | |- ( ph -> ( X .x. F ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrvscacl.s | |- S = ( I mPwSer R ) |
|
| 2 | psrvscacl.n | |- .x. = ( .s ` S ) |
|
| 3 | psrvscacl.k | |- K = ( Base ` R ) |
|
| 4 | psrvscacl.b | |- B = ( Base ` S ) |
|
| 5 | psrvscacl.r | |- ( ph -> R e. Ring ) |
|
| 6 | psrvscacl.x | |- ( ph -> X e. K ) |
|
| 7 | psrvscacl.y | |- ( ph -> F e. B ) |
|
| 8 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 9 | 3 8 | ringcl | |- ( ( R e. Ring /\ x e. K /\ y e. K ) -> ( x ( .r ` R ) y ) e. K ) |
| 10 | 9 | 3expb | |- ( ( R e. Ring /\ ( x e. K /\ y e. K ) ) -> ( x ( .r ` R ) y ) e. K ) |
| 11 | 5 10 | sylan | |- ( ( ph /\ ( x e. K /\ y e. K ) ) -> ( x ( .r ` R ) y ) e. K ) |
| 12 | fconst6g | |- ( X e. K -> ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { X } ) : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> K ) |
|
| 13 | 6 12 | syl | |- ( ph -> ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { X } ) : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> K ) |
| 14 | eqid | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 15 | 1 3 14 4 7 | psrelbas | |- ( ph -> F : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> K ) |
| 16 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 17 | 16 | rabex | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } e. _V |
| 18 | 17 | a1i | |- ( ph -> { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } e. _V ) |
| 19 | inidm | |- ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } i^i { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 20 | 11 13 15 18 18 19 | off | |- ( ph -> ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { X } ) oF ( .r ` R ) F ) : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> K ) |
| 21 | 3 | fvexi | |- K e. _V |
| 22 | 21 17 | elmap | |- ( ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { X } ) oF ( .r ` R ) F ) e. ( K ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) <-> ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { X } ) oF ( .r ` R ) F ) : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> K ) |
| 23 | 20 22 | sylibr | |- ( ph -> ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { X } ) oF ( .r ` R ) F ) e. ( K ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) |
| 24 | 1 2 3 4 8 14 6 7 | psrvsca | |- ( ph -> ( X .x. F ) = ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { X } ) oF ( .r ` R ) F ) ) |
| 25 | reldmpsr | |- Rel dom mPwSer |
|
| 26 | 25 1 4 | elbasov | |- ( F e. B -> ( I e. _V /\ R e. _V ) ) |
| 27 | 7 26 | syl | |- ( ph -> ( I e. _V /\ R e. _V ) ) |
| 28 | 27 | simpld | |- ( ph -> I e. _V ) |
| 29 | 1 3 14 4 28 | psrbas | |- ( ph -> B = ( K ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) |
| 30 | 23 24 29 | 3eltr4d | |- ( ph -> ( X .x. F ) e. B ) |