This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a left module. See note in isgrpd2 regarding the ph on hypotheses that name structure components. (Contributed by Mario Carneiro, 22-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islmodd.v | |- ( ph -> V = ( Base ` W ) ) |
|
| islmodd.a | |- ( ph -> .+ = ( +g ` W ) ) |
||
| islmodd.f | |- ( ph -> F = ( Scalar ` W ) ) |
||
| islmodd.s | |- ( ph -> .x. = ( .s ` W ) ) |
||
| islmodd.b | |- ( ph -> B = ( Base ` F ) ) |
||
| islmodd.p | |- ( ph -> .+^ = ( +g ` F ) ) |
||
| islmodd.t | |- ( ph -> .X. = ( .r ` F ) ) |
||
| islmodd.u | |- ( ph -> .1. = ( 1r ` F ) ) |
||
| islmodd.r | |- ( ph -> F e. Ring ) |
||
| islmodd.l | |- ( ph -> W e. Grp ) |
||
| islmodd.w | |- ( ( ph /\ x e. B /\ y e. V ) -> ( x .x. y ) e. V ) |
||
| islmodd.c | |- ( ( ph /\ ( x e. B /\ y e. V /\ z e. V ) ) -> ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) ) |
||
| islmodd.d | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. V ) ) -> ( ( x .+^ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) |
||
| islmodd.e | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. V ) ) -> ( ( x .X. y ) .x. z ) = ( x .x. ( y .x. z ) ) ) |
||
| islmodd.g | |- ( ( ph /\ x e. V ) -> ( .1. .x. x ) = x ) |
||
| Assertion | islmodd | |- ( ph -> W e. LMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islmodd.v | |- ( ph -> V = ( Base ` W ) ) |
|
| 2 | islmodd.a | |- ( ph -> .+ = ( +g ` W ) ) |
|
| 3 | islmodd.f | |- ( ph -> F = ( Scalar ` W ) ) |
|
| 4 | islmodd.s | |- ( ph -> .x. = ( .s ` W ) ) |
|
| 5 | islmodd.b | |- ( ph -> B = ( Base ` F ) ) |
|
| 6 | islmodd.p | |- ( ph -> .+^ = ( +g ` F ) ) |
|
| 7 | islmodd.t | |- ( ph -> .X. = ( .r ` F ) ) |
|
| 8 | islmodd.u | |- ( ph -> .1. = ( 1r ` F ) ) |
|
| 9 | islmodd.r | |- ( ph -> F e. Ring ) |
|
| 10 | islmodd.l | |- ( ph -> W e. Grp ) |
|
| 11 | islmodd.w | |- ( ( ph /\ x e. B /\ y e. V ) -> ( x .x. y ) e. V ) |
|
| 12 | islmodd.c | |- ( ( ph /\ ( x e. B /\ y e. V /\ z e. V ) ) -> ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) ) |
|
| 13 | islmodd.d | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. V ) ) -> ( ( x .+^ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) |
|
| 14 | islmodd.e | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. V ) ) -> ( ( x .X. y ) .x. z ) = ( x .x. ( y .x. z ) ) ) |
|
| 15 | islmodd.g | |- ( ( ph /\ x e. V ) -> ( .1. .x. x ) = x ) |
|
| 16 | 3 9 | eqeltrrd | |- ( ph -> ( Scalar ` W ) e. Ring ) |
| 17 | 11 | 3expb | |- ( ( ph /\ ( x e. B /\ y e. V ) ) -> ( x .x. y ) e. V ) |
| 18 | 17 | ralrimivva | |- ( ph -> A. x e. B A. y e. V ( x .x. y ) e. V ) |
| 19 | oveq1 | |- ( x = r -> ( x .x. y ) = ( r .x. y ) ) |
|
| 20 | 19 | eleq1d | |- ( x = r -> ( ( x .x. y ) e. V <-> ( r .x. y ) e. V ) ) |
| 21 | oveq2 | |- ( y = w -> ( r .x. y ) = ( r .x. w ) ) |
|
| 22 | 21 | eleq1d | |- ( y = w -> ( ( r .x. y ) e. V <-> ( r .x. w ) e. V ) ) |
| 23 | 20 22 | rspc2v | |- ( ( r e. B /\ w e. V ) -> ( A. x e. B A. y e. V ( x .x. y ) e. V -> ( r .x. w ) e. V ) ) |
| 24 | 23 | ad2ant2l | |- ( ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) -> ( A. x e. B A. y e. V ( x .x. y ) e. V -> ( r .x. w ) e. V ) ) |
| 25 | 18 24 | mpan9 | |- ( ( ph /\ ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) ) -> ( r .x. w ) e. V ) |
| 26 | 12 | ralrimivvva | |- ( ph -> A. x e. B A. y e. V A. z e. V ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) ) |
| 27 | oveq1 | |- ( x = r -> ( x .x. ( y .+ z ) ) = ( r .x. ( y .+ z ) ) ) |
|
| 28 | oveq1 | |- ( x = r -> ( x .x. z ) = ( r .x. z ) ) |
|
| 29 | 19 28 | oveq12d | |- ( x = r -> ( ( x .x. y ) .+ ( x .x. z ) ) = ( ( r .x. y ) .+ ( r .x. z ) ) ) |
| 30 | 27 29 | eqeq12d | |- ( x = r -> ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) <-> ( r .x. ( y .+ z ) ) = ( ( r .x. y ) .+ ( r .x. z ) ) ) ) |
| 31 | oveq1 | |- ( y = w -> ( y .+ z ) = ( w .+ z ) ) |
|
| 32 | 31 | oveq2d | |- ( y = w -> ( r .x. ( y .+ z ) ) = ( r .x. ( w .+ z ) ) ) |
| 33 | 21 | oveq1d | |- ( y = w -> ( ( r .x. y ) .+ ( r .x. z ) ) = ( ( r .x. w ) .+ ( r .x. z ) ) ) |
| 34 | 32 33 | eqeq12d | |- ( y = w -> ( ( r .x. ( y .+ z ) ) = ( ( r .x. y ) .+ ( r .x. z ) ) <-> ( r .x. ( w .+ z ) ) = ( ( r .x. w ) .+ ( r .x. z ) ) ) ) |
| 35 | oveq2 | |- ( z = u -> ( w .+ z ) = ( w .+ u ) ) |
|
| 36 | 35 | oveq2d | |- ( z = u -> ( r .x. ( w .+ z ) ) = ( r .x. ( w .+ u ) ) ) |
| 37 | oveq2 | |- ( z = u -> ( r .x. z ) = ( r .x. u ) ) |
|
| 38 | 37 | oveq2d | |- ( z = u -> ( ( r .x. w ) .+ ( r .x. z ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) ) |
| 39 | 36 38 | eqeq12d | |- ( z = u -> ( ( r .x. ( w .+ z ) ) = ( ( r .x. w ) .+ ( r .x. z ) ) <-> ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) ) ) |
| 40 | 30 34 39 | rspc3v | |- ( ( r e. B /\ w e. V /\ u e. V ) -> ( A. x e. B A. y e. V A. z e. V ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) -> ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) ) ) |
| 41 | 40 | 3com23 | |- ( ( r e. B /\ u e. V /\ w e. V ) -> ( A. x e. B A. y e. V A. z e. V ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) -> ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) ) ) |
| 42 | 41 | 3expb | |- ( ( r e. B /\ ( u e. V /\ w e. V ) ) -> ( A. x e. B A. y e. V A. z e. V ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) -> ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) ) ) |
| 43 | 42 | adantll | |- ( ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) -> ( A. x e. B A. y e. V A. z e. V ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) -> ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) ) ) |
| 44 | 26 43 | mpan9 | |- ( ( ph /\ ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) ) -> ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) ) |
| 45 | simpll | |- ( ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) -> x e. B ) |
|
| 46 | 13 | 3exp2 | |- ( ph -> ( x e. B -> ( y e. B -> ( z e. V -> ( ( x .+^ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) ) ) ) |
| 47 | 46 | imp43 | |- ( ( ( ph /\ x e. B ) /\ ( y e. B /\ z e. V ) ) -> ( ( x .+^ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) |
| 48 | 47 | ralrimivva | |- ( ( ph /\ x e. B ) -> A. y e. B A. z e. V ( ( x .+^ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) |
| 49 | 45 48 | sylan2 | |- ( ( ph /\ ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) ) -> A. y e. B A. z e. V ( ( x .+^ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) |
| 50 | simprlr | |- ( ( ph /\ ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) ) -> r e. B ) |
|
| 51 | simprrr | |- ( ( ph /\ ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) ) -> w e. V ) |
|
| 52 | oveq2 | |- ( y = r -> ( x .+^ y ) = ( x .+^ r ) ) |
|
| 53 | 52 | oveq1d | |- ( y = r -> ( ( x .+^ y ) .x. z ) = ( ( x .+^ r ) .x. z ) ) |
| 54 | oveq1 | |- ( y = r -> ( y .x. z ) = ( r .x. z ) ) |
|
| 55 | 54 | oveq2d | |- ( y = r -> ( ( x .x. z ) .+ ( y .x. z ) ) = ( ( x .x. z ) .+ ( r .x. z ) ) ) |
| 56 | 53 55 | eqeq12d | |- ( y = r -> ( ( ( x .+^ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) <-> ( ( x .+^ r ) .x. z ) = ( ( x .x. z ) .+ ( r .x. z ) ) ) ) |
| 57 | oveq2 | |- ( z = w -> ( ( x .+^ r ) .x. z ) = ( ( x .+^ r ) .x. w ) ) |
|
| 58 | oveq2 | |- ( z = w -> ( x .x. z ) = ( x .x. w ) ) |
|
| 59 | oveq2 | |- ( z = w -> ( r .x. z ) = ( r .x. w ) ) |
|
| 60 | 58 59 | oveq12d | |- ( z = w -> ( ( x .x. z ) .+ ( r .x. z ) ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) |
| 61 | 57 60 | eqeq12d | |- ( z = w -> ( ( ( x .+^ r ) .x. z ) = ( ( x .x. z ) .+ ( r .x. z ) ) <-> ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) ) |
| 62 | 56 61 | rspc2v | |- ( ( r e. B /\ w e. V ) -> ( A. y e. B A. z e. V ( ( x .+^ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) -> ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) ) |
| 63 | 50 51 62 | syl2anc | |- ( ( ph /\ ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) ) -> ( A. y e. B A. z e. V ( ( x .+^ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) -> ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) ) |
| 64 | 49 63 | mpd | |- ( ( ph /\ ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) ) -> ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) |
| 65 | 25 44 64 | 3jca | |- ( ( ph /\ ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) ) -> ( ( r .x. w ) e. V /\ ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) /\ ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) ) |
| 66 | 14 | 3exp2 | |- ( ph -> ( x e. B -> ( y e. B -> ( z e. V -> ( ( x .X. y ) .x. z ) = ( x .x. ( y .x. z ) ) ) ) ) ) |
| 67 | 66 | imp43 | |- ( ( ( ph /\ x e. B ) /\ ( y e. B /\ z e. V ) ) -> ( ( x .X. y ) .x. z ) = ( x .x. ( y .x. z ) ) ) |
| 68 | 67 | ralrimivva | |- ( ( ph /\ x e. B ) -> A. y e. B A. z e. V ( ( x .X. y ) .x. z ) = ( x .x. ( y .x. z ) ) ) |
| 69 | 45 68 | sylan2 | |- ( ( ph /\ ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) ) -> A. y e. B A. z e. V ( ( x .X. y ) .x. z ) = ( x .x. ( y .x. z ) ) ) |
| 70 | oveq2 | |- ( y = r -> ( x .X. y ) = ( x .X. r ) ) |
|
| 71 | 70 | oveq1d | |- ( y = r -> ( ( x .X. y ) .x. z ) = ( ( x .X. r ) .x. z ) ) |
| 72 | 54 | oveq2d | |- ( y = r -> ( x .x. ( y .x. z ) ) = ( x .x. ( r .x. z ) ) ) |
| 73 | 71 72 | eqeq12d | |- ( y = r -> ( ( ( x .X. y ) .x. z ) = ( x .x. ( y .x. z ) ) <-> ( ( x .X. r ) .x. z ) = ( x .x. ( r .x. z ) ) ) ) |
| 74 | oveq2 | |- ( z = w -> ( ( x .X. r ) .x. z ) = ( ( x .X. r ) .x. w ) ) |
|
| 75 | 59 | oveq2d | |- ( z = w -> ( x .x. ( r .x. z ) ) = ( x .x. ( r .x. w ) ) ) |
| 76 | 74 75 | eqeq12d | |- ( z = w -> ( ( ( x .X. r ) .x. z ) = ( x .x. ( r .x. z ) ) <-> ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) ) ) |
| 77 | 73 76 | rspc2v | |- ( ( r e. B /\ w e. V ) -> ( A. y e. B A. z e. V ( ( x .X. y ) .x. z ) = ( x .x. ( y .x. z ) ) -> ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) ) ) |
| 78 | 50 51 77 | syl2anc | |- ( ( ph /\ ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) ) -> ( A. y e. B A. z e. V ( ( x .X. y ) .x. z ) = ( x .x. ( y .x. z ) ) -> ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) ) ) |
| 79 | 69 78 | mpd | |- ( ( ph /\ ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) ) -> ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) ) |
| 80 | 15 | ralrimiva | |- ( ph -> A. x e. V ( .1. .x. x ) = x ) |
| 81 | oveq2 | |- ( x = w -> ( .1. .x. x ) = ( .1. .x. w ) ) |
|
| 82 | id | |- ( x = w -> x = w ) |
|
| 83 | 81 82 | eqeq12d | |- ( x = w -> ( ( .1. .x. x ) = x <-> ( .1. .x. w ) = w ) ) |
| 84 | 83 | rspcv | |- ( w e. V -> ( A. x e. V ( .1. .x. x ) = x -> ( .1. .x. w ) = w ) ) |
| 85 | 84 | ad2antll | |- ( ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) -> ( A. x e. V ( .1. .x. x ) = x -> ( .1. .x. w ) = w ) ) |
| 86 | 80 85 | mpan9 | |- ( ( ph /\ ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) ) -> ( .1. .x. w ) = w ) |
| 87 | 65 79 86 | jca32 | |- ( ( ph /\ ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) ) -> ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) /\ ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) |
| 88 | 87 | anassrs | |- ( ( ( ph /\ ( x e. B /\ r e. B ) ) /\ ( u e. V /\ w e. V ) ) -> ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) /\ ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) |
| 89 | 88 | ralrimivva | |- ( ( ph /\ ( x e. B /\ r e. B ) ) -> A. u e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) /\ ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) |
| 90 | 89 | ralrimivva | |- ( ph -> A. x e. B A. r e. B A. u e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) /\ ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) |
| 91 | 3 | fveq2d | |- ( ph -> ( Base ` F ) = ( Base ` ( Scalar ` W ) ) ) |
| 92 | 5 91 | eqtrd | |- ( ph -> B = ( Base ` ( Scalar ` W ) ) ) |
| 93 | 4 | oveqd | |- ( ph -> ( r .x. w ) = ( r ( .s ` W ) w ) ) |
| 94 | 93 1 | eleq12d | |- ( ph -> ( ( r .x. w ) e. V <-> ( r ( .s ` W ) w ) e. ( Base ` W ) ) ) |
| 95 | eqidd | |- ( ph -> r = r ) |
|
| 96 | 2 | oveqd | |- ( ph -> ( w .+ u ) = ( w ( +g ` W ) u ) ) |
| 97 | 4 95 96 | oveq123d | |- ( ph -> ( r .x. ( w .+ u ) ) = ( r ( .s ` W ) ( w ( +g ` W ) u ) ) ) |
| 98 | 4 | oveqd | |- ( ph -> ( r .x. u ) = ( r ( .s ` W ) u ) ) |
| 99 | 2 93 98 | oveq123d | |- ( ph -> ( ( r .x. w ) .+ ( r .x. u ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) u ) ) ) |
| 100 | 97 99 | eqeq12d | |- ( ph -> ( ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) <-> ( r ( .s ` W ) ( w ( +g ` W ) u ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) u ) ) ) ) |
| 101 | 3 | fveq2d | |- ( ph -> ( +g ` F ) = ( +g ` ( Scalar ` W ) ) ) |
| 102 | 6 101 | eqtrd | |- ( ph -> .+^ = ( +g ` ( Scalar ` W ) ) ) |
| 103 | 102 | oveqd | |- ( ph -> ( x .+^ r ) = ( x ( +g ` ( Scalar ` W ) ) r ) ) |
| 104 | eqidd | |- ( ph -> w = w ) |
|
| 105 | 4 103 104 | oveq123d | |- ( ph -> ( ( x .+^ r ) .x. w ) = ( ( x ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) ) |
| 106 | 4 | oveqd | |- ( ph -> ( x .x. w ) = ( x ( .s ` W ) w ) ) |
| 107 | 2 106 93 | oveq123d | |- ( ph -> ( ( x .x. w ) .+ ( r .x. w ) ) = ( ( x ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) |
| 108 | 105 107 | eqeq12d | |- ( ph -> ( ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) <-> ( ( x ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( x ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) ) |
| 109 | 94 100 108 | 3anbi123d | |- ( ph -> ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) /\ ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) <-> ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) u ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) u ) ) /\ ( ( x ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( x ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) ) ) |
| 110 | 3 | fveq2d | |- ( ph -> ( .r ` F ) = ( .r ` ( Scalar ` W ) ) ) |
| 111 | 7 110 | eqtrd | |- ( ph -> .X. = ( .r ` ( Scalar ` W ) ) ) |
| 112 | 111 | oveqd | |- ( ph -> ( x .X. r ) = ( x ( .r ` ( Scalar ` W ) ) r ) ) |
| 113 | 4 112 104 | oveq123d | |- ( ph -> ( ( x .X. r ) .x. w ) = ( ( x ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) ) |
| 114 | eqidd | |- ( ph -> x = x ) |
|
| 115 | 4 114 93 | oveq123d | |- ( ph -> ( x .x. ( r .x. w ) ) = ( x ( .s ` W ) ( r ( .s ` W ) w ) ) ) |
| 116 | 113 115 | eqeq12d | |- ( ph -> ( ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) <-> ( ( x ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( x ( .s ` W ) ( r ( .s ` W ) w ) ) ) ) |
| 117 | 3 | fveq2d | |- ( ph -> ( 1r ` F ) = ( 1r ` ( Scalar ` W ) ) ) |
| 118 | 8 117 | eqtrd | |- ( ph -> .1. = ( 1r ` ( Scalar ` W ) ) ) |
| 119 | 4 118 104 | oveq123d | |- ( ph -> ( .1. .x. w ) = ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) ) |
| 120 | 119 | eqeq1d | |- ( ph -> ( ( .1. .x. w ) = w <-> ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) |
| 121 | 116 120 | anbi12d | |- ( ph -> ( ( ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) <-> ( ( ( x ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( x ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) |
| 122 | 109 121 | anbi12d | |- ( ph -> ( ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) /\ ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) <-> ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) u ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) u ) ) /\ ( ( x ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( x ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( x ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( x ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) ) |
| 123 | 1 122 | raleqbidv | |- ( ph -> ( A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) /\ ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) <-> A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) u ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) u ) ) /\ ( ( x ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( x ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( x ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( x ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) ) |
| 124 | 1 123 | raleqbidv | |- ( ph -> ( A. u e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) /\ ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) <-> A. u e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) u ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) u ) ) /\ ( ( x ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( x ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( x ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( x ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) ) |
| 125 | 92 124 | raleqbidv | |- ( ph -> ( A. r e. B A. u e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) /\ ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) <-> A. r e. ( Base ` ( Scalar ` W ) ) A. u e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) u ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) u ) ) /\ ( ( x ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( x ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( x ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( x ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) ) |
| 126 | 92 125 | raleqbidv | |- ( ph -> ( A. x e. B A. r e. B A. u e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) /\ ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) <-> A. x e. ( Base ` ( Scalar ` W ) ) A. r e. ( Base ` ( Scalar ` W ) ) A. u e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) u ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) u ) ) /\ ( ( x ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( x ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( x ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( x ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) ) |
| 127 | 90 126 | mpbid | |- ( ph -> A. x e. ( Base ` ( Scalar ` W ) ) A. r e. ( Base ` ( Scalar ` W ) ) A. u e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) u ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) u ) ) /\ ( ( x ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( x ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( x ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( x ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) |
| 128 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 129 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 130 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 131 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 132 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 133 | eqid | |- ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) ) |
|
| 134 | eqid | |- ( .r ` ( Scalar ` W ) ) = ( .r ` ( Scalar ` W ) ) |
|
| 135 | eqid | |- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
|
| 136 | 128 129 130 131 132 133 134 135 | islmod | |- ( W e. LMod <-> ( W e. Grp /\ ( Scalar ` W ) e. Ring /\ A. x e. ( Base ` ( Scalar ` W ) ) A. r e. ( Base ` ( Scalar ` W ) ) A. u e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) u ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) u ) ) /\ ( ( x ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( x ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( x ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( x ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) ) |
| 137 | 10 16 127 136 | syl3anbrc | |- ( ph -> W e. LMod ) |