This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar field of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrsca.s | |- S = ( I mPwSer R ) |
|
| psrsca.i | |- ( ph -> I e. V ) |
||
| psrsca.r | |- ( ph -> R e. W ) |
||
| Assertion | psrsca | |- ( ph -> R = ( Scalar ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrsca.s | |- S = ( I mPwSer R ) |
|
| 2 | psrsca.i | |- ( ph -> I e. V ) |
|
| 3 | psrsca.r | |- ( ph -> R e. W ) |
|
| 4 | psrvalstr | |- ( { <. ( Base ` ndx ) , ( Base ` S ) >. , <. ( +g ` ndx ) , ( +g ` S ) >. , <. ( .r ` ndx ) , ( .r ` S ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. ( Base ` R ) , f e. ( Base ` S ) |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) >. } ) Struct <. 1 , 9 >. |
|
| 5 | scaid | |- Scalar = Slot ( Scalar ` ndx ) |
|
| 6 | snsstp1 | |- { <. ( Scalar ` ndx ) , R >. } C_ { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. ( Base ` R ) , f e. ( Base ` S ) |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) >. } |
|
| 7 | ssun2 | |- { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. ( Base ` R ) , f e. ( Base ` S ) |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) >. } C_ ( { <. ( Base ` ndx ) , ( Base ` S ) >. , <. ( +g ` ndx ) , ( +g ` S ) >. , <. ( .r ` ndx ) , ( .r ` S ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. ( Base ` R ) , f e. ( Base ` S ) |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) >. } ) |
|
| 8 | 6 7 | sstri | |- { <. ( Scalar ` ndx ) , R >. } C_ ( { <. ( Base ` ndx ) , ( Base ` S ) >. , <. ( +g ` ndx ) , ( +g ` S ) >. , <. ( .r ` ndx ) , ( .r ` S ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. ( Base ` R ) , f e. ( Base ` S ) |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) >. } ) |
| 9 | 4 5 8 | strfv | |- ( R e. W -> R = ( Scalar ` ( { <. ( Base ` ndx ) , ( Base ` S ) >. , <. ( +g ` ndx ) , ( +g ` S ) >. , <. ( .r ` ndx ) , ( .r ` S ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. ( Base ` R ) , f e. ( Base ` S ) |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) >. } ) ) ) |
| 10 | 3 9 | syl | |- ( ph -> R = ( Scalar ` ( { <. ( Base ` ndx ) , ( Base ` S ) >. , <. ( +g ` ndx ) , ( +g ` S ) >. , <. ( .r ` ndx ) , ( .r ` S ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. ( Base ` R ) , f e. ( Base ` S ) |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) >. } ) ) ) |
| 11 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 12 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 13 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 14 | eqid | |- ( TopOpen ` R ) = ( TopOpen ` R ) |
|
| 15 | eqid | |- { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 16 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 17 | 1 11 15 16 2 | psrbas | |- ( ph -> ( Base ` S ) = ( ( Base ` R ) ^m { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) ) |
| 18 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 19 | 1 16 12 18 | psrplusg | |- ( +g ` S ) = ( oF ( +g ` R ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) |
| 20 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 21 | 1 16 13 20 15 | psrmulr | |- ( .r ` S ) = ( f e. ( Base ` S ) , z e. ( Base ` S ) |-> ( w e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( R gsum ( x e. { y e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | y oR <_ w } |-> ( ( f ` x ) ( .r ` R ) ( z ` ( w oF - x ) ) ) ) ) ) ) |
| 22 | eqid | |- ( x e. ( Base ` R ) , f e. ( Base ` S ) |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) = ( x e. ( Base ` R ) , f e. ( Base ` S ) |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) |
|
| 23 | eqidd | |- ( ph -> ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) = ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) ) |
|
| 24 | 1 11 12 13 14 15 17 19 21 22 23 2 3 | psrval | |- ( ph -> S = ( { <. ( Base ` ndx ) , ( Base ` S ) >. , <. ( +g ` ndx ) , ( +g ` S ) >. , <. ( .r ` ndx ) , ( .r ` S ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. ( Base ` R ) , f e. ( Base ` S ) |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) >. } ) ) |
| 25 | 24 | fveq2d | |- ( ph -> ( Scalar ` S ) = ( Scalar ` ( { <. ( Base ` ndx ) , ( Base ` S ) >. , <. ( +g ` ndx ) , ( +g ` S ) >. , <. ( .r ` ndx ) , ( .r ` S ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. ( Base ` R ) , f e. ( Base ` S ) |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) >. } ) ) ) |
| 26 | 10 25 | eqtr4d | |- ( ph -> R = ( Scalar ` S ) ) |