This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrvsca.s | |- S = ( I mPwSer R ) |
|
| psrvsca.n | |- .xb = ( .s ` S ) |
||
| psrvsca.k | |- K = ( Base ` R ) |
||
| psrvsca.b | |- B = ( Base ` S ) |
||
| psrvsca.m | |- .x. = ( .r ` R ) |
||
| psrvsca.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
||
| psrvsca.x | |- ( ph -> X e. K ) |
||
| psrvsca.y | |- ( ph -> F e. B ) |
||
| Assertion | psrvsca | |- ( ph -> ( X .xb F ) = ( ( D X. { X } ) oF .x. F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrvsca.s | |- S = ( I mPwSer R ) |
|
| 2 | psrvsca.n | |- .xb = ( .s ` S ) |
|
| 3 | psrvsca.k | |- K = ( Base ` R ) |
|
| 4 | psrvsca.b | |- B = ( Base ` S ) |
|
| 5 | psrvsca.m | |- .x. = ( .r ` R ) |
|
| 6 | psrvsca.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 7 | psrvsca.x | |- ( ph -> X e. K ) |
|
| 8 | psrvsca.y | |- ( ph -> F e. B ) |
|
| 9 | sneq | |- ( x = X -> { x } = { X } ) |
|
| 10 | 9 | xpeq2d | |- ( x = X -> ( D X. { x } ) = ( D X. { X } ) ) |
| 11 | 10 | oveq1d | |- ( x = X -> ( ( D X. { x } ) oF .x. f ) = ( ( D X. { X } ) oF .x. f ) ) |
| 12 | oveq2 | |- ( f = F -> ( ( D X. { X } ) oF .x. f ) = ( ( D X. { X } ) oF .x. F ) ) |
|
| 13 | 1 2 3 4 5 6 | psrvscafval | |- .xb = ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) |
| 14 | ovex | |- ( ( D X. { X } ) oF .x. F ) e. _V |
|
| 15 | 11 12 13 14 | ovmpo | |- ( ( X e. K /\ F e. B ) -> ( X .xb F ) = ( ( D X. { X } ) oF .x. F ) ) |
| 16 | 7 8 15 | syl2anc | |- ( ph -> ( X .xb F ) = ( ( D X. { X } ) oF .x. F ) ) |