This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for multiplication in a ring. (Contributed by NM, 27-Aug-2011) (Revised by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringcl.b | |- B = ( Base ` R ) |
|
| ringcl.t | |- .x. = ( .r ` R ) |
||
| Assertion | ringass | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .x. Y ) .x. Z ) = ( X .x. ( Y .x. Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcl.b | |- B = ( Base ` R ) |
|
| 2 | ringcl.t | |- .x. = ( .r ` R ) |
|
| 3 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 4 | 3 | ringmgp | |- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
| 5 | 3 1 | mgpbas | |- B = ( Base ` ( mulGrp ` R ) ) |
| 6 | 3 2 | mgpplusg | |- .x. = ( +g ` ( mulGrp ` R ) ) |
| 7 | 5 6 | mndass | |- ( ( ( mulGrp ` R ) e. Mnd /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .x. Y ) .x. Z ) = ( X .x. ( Y .x. Z ) ) ) |
| 8 | 4 7 | sylan | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .x. Y ) .x. Z ) = ( X .x. ( Y .x. Z ) ) ) |