This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrring.s | |- S = ( I mPwSer R ) |
|
| psrring.i | |- ( ph -> I e. V ) |
||
| psrring.r | |- ( ph -> R e. Ring ) |
||
| psr1cl.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
||
| psr1cl.z | |- .0. = ( 0g ` R ) |
||
| psr1cl.o | |- .1. = ( 1r ` R ) |
||
| psr1cl.u | |- U = ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) |
||
| psr1cl.b | |- B = ( Base ` S ) |
||
| Assertion | psr1cl | |- ( ph -> U e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrring.s | |- S = ( I mPwSer R ) |
|
| 2 | psrring.i | |- ( ph -> I e. V ) |
|
| 3 | psrring.r | |- ( ph -> R e. Ring ) |
|
| 4 | psr1cl.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 5 | psr1cl.z | |- .0. = ( 0g ` R ) |
|
| 6 | psr1cl.o | |- .1. = ( 1r ` R ) |
|
| 7 | psr1cl.u | |- U = ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) |
|
| 8 | psr1cl.b | |- B = ( Base ` S ) |
|
| 9 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 10 | 9 6 | ringidcl | |- ( R e. Ring -> .1. e. ( Base ` R ) ) |
| 11 | 9 5 | ring0cl | |- ( R e. Ring -> .0. e. ( Base ` R ) ) |
| 12 | 10 11 | ifcld | |- ( R e. Ring -> if ( x = ( I X. { 0 } ) , .1. , .0. ) e. ( Base ` R ) ) |
| 13 | 3 12 | syl | |- ( ph -> if ( x = ( I X. { 0 } ) , .1. , .0. ) e. ( Base ` R ) ) |
| 14 | 13 | adantr | |- ( ( ph /\ x e. D ) -> if ( x = ( I X. { 0 } ) , .1. , .0. ) e. ( Base ` R ) ) |
| 15 | 14 7 | fmptd | |- ( ph -> U : D --> ( Base ` R ) ) |
| 16 | fvex | |- ( Base ` R ) e. _V |
|
| 17 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 18 | 4 17 | rabex2 | |- D e. _V |
| 19 | 16 18 | elmap | |- ( U e. ( ( Base ` R ) ^m D ) <-> U : D --> ( Base ` R ) ) |
| 20 | 15 19 | sylibr | |- ( ph -> U e. ( ( Base ` R ) ^m D ) ) |
| 21 | 1 9 4 8 2 | psrbas | |- ( ph -> B = ( ( Base ` R ) ^m D ) ) |
| 22 | 20 21 | eleqtrrd | |- ( ph -> U e. B ) |