This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the set of rationals. (Contributed by NM, 8-Jan-2002) (Revised by Mario Carneiro, 28-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elq | |- ( A e. QQ <-> E. x e. ZZ E. y e. NN A = ( x / y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-q | |- QQ = ( / " ( ZZ X. NN ) ) |
|
| 2 | 1 | eleq2i | |- ( A e. QQ <-> A e. ( / " ( ZZ X. NN ) ) ) |
| 3 | df-div | |- / = ( x e. CC , y e. ( CC \ { 0 } ) |-> ( iota_ z e. CC ( y x. z ) = x ) ) |
|
| 4 | riotaex | |- ( iota_ z e. CC ( y x. z ) = x ) e. _V |
|
| 5 | 3 4 | fnmpoi | |- / Fn ( CC X. ( CC \ { 0 } ) ) |
| 6 | zsscn | |- ZZ C_ CC |
|
| 7 | nncn | |- ( x e. NN -> x e. CC ) |
|
| 8 | nnne0 | |- ( x e. NN -> x =/= 0 ) |
|
| 9 | eldifsn | |- ( x e. ( CC \ { 0 } ) <-> ( x e. CC /\ x =/= 0 ) ) |
|
| 10 | 7 8 9 | sylanbrc | |- ( x e. NN -> x e. ( CC \ { 0 } ) ) |
| 11 | 10 | ssriv | |- NN C_ ( CC \ { 0 } ) |
| 12 | xpss12 | |- ( ( ZZ C_ CC /\ NN C_ ( CC \ { 0 } ) ) -> ( ZZ X. NN ) C_ ( CC X. ( CC \ { 0 } ) ) ) |
|
| 13 | 6 11 12 | mp2an | |- ( ZZ X. NN ) C_ ( CC X. ( CC \ { 0 } ) ) |
| 14 | ovelimab | |- ( ( / Fn ( CC X. ( CC \ { 0 } ) ) /\ ( ZZ X. NN ) C_ ( CC X. ( CC \ { 0 } ) ) ) -> ( A e. ( / " ( ZZ X. NN ) ) <-> E. x e. ZZ E. y e. NN A = ( x / y ) ) ) |
|
| 15 | 5 13 14 | mp2an | |- ( A e. ( / " ( ZZ X. NN ) ) <-> E. x e. ZZ E. y e. NN A = ( x / y ) ) |
| 16 | 2 15 | bitri | |- ( A e. QQ <-> E. x e. ZZ E. y e. NN A = ( x / y ) ) |