This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The remainder after dividing out all factors of P is not divisible by P . (Contributed by Mario Carneiro, 9-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pczndvds2 | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. P || ( N / ( P ^ ( P pCnt N ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmuz2 | |- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
|
| 2 | eqid | |- { n e. NN0 | ( P ^ n ) || N } = { n e. NN0 | ( P ^ n ) || N } |
|
| 3 | eqid | |- sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) |
|
| 4 | 2 3 | pcprendvds2 | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. P || ( N / ( P ^ sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) ) ) |
| 5 | 1 4 | sylan | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. P || ( N / ( P ^ sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) ) ) |
| 6 | 3 | pczpre | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P pCnt N ) = sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) |
| 7 | 6 | oveq2d | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( P pCnt N ) ) = ( P ^ sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) ) |
| 8 | 7 | oveq2d | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( N / ( P ^ ( P pCnt N ) ) ) = ( N / ( P ^ sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) ) ) |
| 9 | 8 | breq2d | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P || ( N / ( P ^ ( P pCnt N ) ) ) <-> P || ( N / ( P ^ sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) ) ) ) |
| 10 | 5 9 | mtbird | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. P || ( N / ( P ^ ( P pCnt N ) ) ) ) |