This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pcadd . The original numbers A and B have been decomposed using the prime count function as ( P ^ M ) x. ( R / S ) where R , S are both not divisible by P and M = ( P pCnt A ) , and similarly for B . (Contributed by Mario Carneiro, 9-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pcaddlem.1 | |- ( ph -> P e. Prime ) |
|
| pcaddlem.2 | |- ( ph -> A = ( ( P ^ M ) x. ( R / S ) ) ) |
||
| pcaddlem.3 | |- ( ph -> B = ( ( P ^ N ) x. ( T / U ) ) ) |
||
| pcaddlem.4 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| pcaddlem.5 | |- ( ph -> ( R e. ZZ /\ -. P || R ) ) |
||
| pcaddlem.6 | |- ( ph -> ( S e. NN /\ -. P || S ) ) |
||
| pcaddlem.7 | |- ( ph -> ( T e. ZZ /\ -. P || T ) ) |
||
| pcaddlem.8 | |- ( ph -> ( U e. NN /\ -. P || U ) ) |
||
| Assertion | pcaddlem | |- ( ph -> M <_ ( P pCnt ( A + B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcaddlem.1 | |- ( ph -> P e. Prime ) |
|
| 2 | pcaddlem.2 | |- ( ph -> A = ( ( P ^ M ) x. ( R / S ) ) ) |
|
| 3 | pcaddlem.3 | |- ( ph -> B = ( ( P ^ N ) x. ( T / U ) ) ) |
|
| 4 | pcaddlem.4 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 5 | pcaddlem.5 | |- ( ph -> ( R e. ZZ /\ -. P || R ) ) |
|
| 6 | pcaddlem.6 | |- ( ph -> ( S e. NN /\ -. P || S ) ) |
|
| 7 | pcaddlem.7 | |- ( ph -> ( T e. ZZ /\ -. P || T ) ) |
|
| 8 | pcaddlem.8 | |- ( ph -> ( U e. NN /\ -. P || U ) ) |
|
| 9 | oveq2 | |- ( ( A + B ) = 0 -> ( P pCnt ( A + B ) ) = ( P pCnt 0 ) ) |
|
| 10 | 9 | breq2d | |- ( ( A + B ) = 0 -> ( M <_ ( P pCnt ( A + B ) ) <-> M <_ ( P pCnt 0 ) ) ) |
| 11 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 12 | 4 11 | syl | |- ( ph -> M e. ZZ ) |
| 13 | 12 | zred | |- ( ph -> M e. RR ) |
| 14 | 13 | adantr | |- ( ( ph /\ ( A + B ) =/= 0 ) -> M e. RR ) |
| 15 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 16 | 1 15 | syl | |- ( ph -> P e. NN ) |
| 17 | 16 | nncnd | |- ( ph -> P e. CC ) |
| 18 | 16 | nnne0d | |- ( ph -> P =/= 0 ) |
| 19 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 20 | 4 19 | syl | |- ( ph -> N e. ZZ ) |
| 21 | 20 12 | zsubcld | |- ( ph -> ( N - M ) e. ZZ ) |
| 22 | 17 18 21 | expclzd | |- ( ph -> ( P ^ ( N - M ) ) e. CC ) |
| 23 | 7 | simpld | |- ( ph -> T e. ZZ ) |
| 24 | 23 | zcnd | |- ( ph -> T e. CC ) |
| 25 | 8 | simpld | |- ( ph -> U e. NN ) |
| 26 | 25 | nncnd | |- ( ph -> U e. CC ) |
| 27 | 25 | nnne0d | |- ( ph -> U =/= 0 ) |
| 28 | 22 24 26 27 | divassd | |- ( ph -> ( ( ( P ^ ( N - M ) ) x. T ) / U ) = ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) |
| 29 | 28 | oveq2d | |- ( ph -> ( ( R / S ) + ( ( ( P ^ ( N - M ) ) x. T ) / U ) ) = ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) |
| 30 | 5 | simpld | |- ( ph -> R e. ZZ ) |
| 31 | 30 | zcnd | |- ( ph -> R e. CC ) |
| 32 | 6 | simpld | |- ( ph -> S e. NN ) |
| 33 | 32 | nncnd | |- ( ph -> S e. CC ) |
| 34 | 22 24 | mulcld | |- ( ph -> ( ( P ^ ( N - M ) ) x. T ) e. CC ) |
| 35 | 32 | nnne0d | |- ( ph -> S =/= 0 ) |
| 36 | 31 33 34 26 35 27 | divadddivd | |- ( ph -> ( ( R / S ) + ( ( ( P ^ ( N - M ) ) x. T ) / U ) ) = ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) / ( S x. U ) ) ) |
| 37 | 29 36 | eqtr3d | |- ( ph -> ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) = ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) / ( S x. U ) ) ) |
| 38 | 37 | oveq2d | |- ( ph -> ( P pCnt ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) = ( P pCnt ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) / ( S x. U ) ) ) ) |
| 39 | 38 | adantr | |- ( ( ph /\ ( A + B ) =/= 0 ) -> ( P pCnt ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) = ( P pCnt ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) / ( S x. U ) ) ) ) |
| 40 | 1 | adantr | |- ( ( ph /\ ( A + B ) =/= 0 ) -> P e. Prime ) |
| 41 | 25 | nnzd | |- ( ph -> U e. ZZ ) |
| 42 | 30 41 | zmulcld | |- ( ph -> ( R x. U ) e. ZZ ) |
| 43 | uznn0sub | |- ( N e. ( ZZ>= ` M ) -> ( N - M ) e. NN0 ) |
|
| 44 | 4 43 | syl | |- ( ph -> ( N - M ) e. NN0 ) |
| 45 | 16 44 | nnexpcld | |- ( ph -> ( P ^ ( N - M ) ) e. NN ) |
| 46 | 45 | nnzd | |- ( ph -> ( P ^ ( N - M ) ) e. ZZ ) |
| 47 | 46 23 | zmulcld | |- ( ph -> ( ( P ^ ( N - M ) ) x. T ) e. ZZ ) |
| 48 | 32 | nnzd | |- ( ph -> S e. ZZ ) |
| 49 | 47 48 | zmulcld | |- ( ph -> ( ( ( P ^ ( N - M ) ) x. T ) x. S ) e. ZZ ) |
| 50 | 42 49 | zaddcld | |- ( ph -> ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) e. ZZ ) |
| 51 | 50 | adantr | |- ( ( ph /\ ( A + B ) =/= 0 ) -> ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) e. ZZ ) |
| 52 | 17 18 12 | expclzd | |- ( ph -> ( P ^ M ) e. CC ) |
| 53 | 52 | mul01d | |- ( ph -> ( ( P ^ M ) x. 0 ) = 0 ) |
| 54 | oveq2 | |- ( ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) = 0 -> ( ( P ^ M ) x. ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) = ( ( P ^ M ) x. 0 ) ) |
|
| 55 | 54 | eqeq1d | |- ( ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) = 0 -> ( ( ( P ^ M ) x. ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) = 0 <-> ( ( P ^ M ) x. 0 ) = 0 ) ) |
| 56 | 53 55 | syl5ibrcom | |- ( ph -> ( ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) = 0 -> ( ( P ^ M ) x. ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) = 0 ) ) |
| 57 | 56 | necon3d | |- ( ph -> ( ( ( P ^ M ) x. ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) =/= 0 -> ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) =/= 0 ) ) |
| 58 | 31 33 35 | divcld | |- ( ph -> ( R / S ) e. CC ) |
| 59 | 24 26 27 | divcld | |- ( ph -> ( T / U ) e. CC ) |
| 60 | 22 59 | mulcld | |- ( ph -> ( ( P ^ ( N - M ) ) x. ( T / U ) ) e. CC ) |
| 61 | 52 58 60 | adddid | |- ( ph -> ( ( P ^ M ) x. ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) = ( ( ( P ^ M ) x. ( R / S ) ) + ( ( P ^ M ) x. ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) |
| 62 | 12 | zcnd | |- ( ph -> M e. CC ) |
| 63 | 20 | zcnd | |- ( ph -> N e. CC ) |
| 64 | 62 63 | pncan3d | |- ( ph -> ( M + ( N - M ) ) = N ) |
| 65 | 64 | oveq2d | |- ( ph -> ( P ^ ( M + ( N - M ) ) ) = ( P ^ N ) ) |
| 66 | expaddz | |- ( ( ( P e. CC /\ P =/= 0 ) /\ ( M e. ZZ /\ ( N - M ) e. ZZ ) ) -> ( P ^ ( M + ( N - M ) ) ) = ( ( P ^ M ) x. ( P ^ ( N - M ) ) ) ) |
|
| 67 | 17 18 12 21 66 | syl22anc | |- ( ph -> ( P ^ ( M + ( N - M ) ) ) = ( ( P ^ M ) x. ( P ^ ( N - M ) ) ) ) |
| 68 | 65 67 | eqtr3d | |- ( ph -> ( P ^ N ) = ( ( P ^ M ) x. ( P ^ ( N - M ) ) ) ) |
| 69 | 68 | oveq1d | |- ( ph -> ( ( P ^ N ) x. ( T / U ) ) = ( ( ( P ^ M ) x. ( P ^ ( N - M ) ) ) x. ( T / U ) ) ) |
| 70 | 52 22 59 | mulassd | |- ( ph -> ( ( ( P ^ M ) x. ( P ^ ( N - M ) ) ) x. ( T / U ) ) = ( ( P ^ M ) x. ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) |
| 71 | 3 69 70 | 3eqtrd | |- ( ph -> B = ( ( P ^ M ) x. ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) |
| 72 | 2 71 | oveq12d | |- ( ph -> ( A + B ) = ( ( ( P ^ M ) x. ( R / S ) ) + ( ( P ^ M ) x. ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) |
| 73 | 61 72 | eqtr4d | |- ( ph -> ( ( P ^ M ) x. ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) = ( A + B ) ) |
| 74 | 73 | neeq1d | |- ( ph -> ( ( ( P ^ M ) x. ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) =/= 0 <-> ( A + B ) =/= 0 ) ) |
| 75 | 37 | neeq1d | |- ( ph -> ( ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) =/= 0 <-> ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) / ( S x. U ) ) =/= 0 ) ) |
| 76 | 57 74 75 | 3imtr3d | |- ( ph -> ( ( A + B ) =/= 0 -> ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) / ( S x. U ) ) =/= 0 ) ) |
| 77 | 32 25 | nnmulcld | |- ( ph -> ( S x. U ) e. NN ) |
| 78 | 77 | nncnd | |- ( ph -> ( S x. U ) e. CC ) |
| 79 | 77 | nnne0d | |- ( ph -> ( S x. U ) =/= 0 ) |
| 80 | 78 79 | div0d | |- ( ph -> ( 0 / ( S x. U ) ) = 0 ) |
| 81 | oveq1 | |- ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) = 0 -> ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) / ( S x. U ) ) = ( 0 / ( S x. U ) ) ) |
|
| 82 | 81 | eqeq1d | |- ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) = 0 -> ( ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) / ( S x. U ) ) = 0 <-> ( 0 / ( S x. U ) ) = 0 ) ) |
| 83 | 80 82 | syl5ibrcom | |- ( ph -> ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) = 0 -> ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) / ( S x. U ) ) = 0 ) ) |
| 84 | 83 | necon3d | |- ( ph -> ( ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) / ( S x. U ) ) =/= 0 -> ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) =/= 0 ) ) |
| 85 | 76 84 | syld | |- ( ph -> ( ( A + B ) =/= 0 -> ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) =/= 0 ) ) |
| 86 | 85 | imp | |- ( ( ph /\ ( A + B ) =/= 0 ) -> ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) =/= 0 ) |
| 87 | 77 | adantr | |- ( ( ph /\ ( A + B ) =/= 0 ) -> ( S x. U ) e. NN ) |
| 88 | pcdiv | |- ( ( P e. Prime /\ ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) e. ZZ /\ ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) =/= 0 ) /\ ( S x. U ) e. NN ) -> ( P pCnt ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) / ( S x. U ) ) ) = ( ( P pCnt ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) ) - ( P pCnt ( S x. U ) ) ) ) |
|
| 89 | 40 51 86 87 88 | syl121anc | |- ( ( ph /\ ( A + B ) =/= 0 ) -> ( P pCnt ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) / ( S x. U ) ) ) = ( ( P pCnt ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) ) - ( P pCnt ( S x. U ) ) ) ) |
| 90 | pcmul | |- ( ( P e. Prime /\ ( S e. ZZ /\ S =/= 0 ) /\ ( U e. ZZ /\ U =/= 0 ) ) -> ( P pCnt ( S x. U ) ) = ( ( P pCnt S ) + ( P pCnt U ) ) ) |
|
| 91 | 1 48 35 41 27 90 | syl122anc | |- ( ph -> ( P pCnt ( S x. U ) ) = ( ( P pCnt S ) + ( P pCnt U ) ) ) |
| 92 | 6 | simprd | |- ( ph -> -. P || S ) |
| 93 | pceq0 | |- ( ( P e. Prime /\ S e. NN ) -> ( ( P pCnt S ) = 0 <-> -. P || S ) ) |
|
| 94 | 1 32 93 | syl2anc | |- ( ph -> ( ( P pCnt S ) = 0 <-> -. P || S ) ) |
| 95 | 92 94 | mpbird | |- ( ph -> ( P pCnt S ) = 0 ) |
| 96 | 8 | simprd | |- ( ph -> -. P || U ) |
| 97 | pceq0 | |- ( ( P e. Prime /\ U e. NN ) -> ( ( P pCnt U ) = 0 <-> -. P || U ) ) |
|
| 98 | 1 25 97 | syl2anc | |- ( ph -> ( ( P pCnt U ) = 0 <-> -. P || U ) ) |
| 99 | 96 98 | mpbird | |- ( ph -> ( P pCnt U ) = 0 ) |
| 100 | 95 99 | oveq12d | |- ( ph -> ( ( P pCnt S ) + ( P pCnt U ) ) = ( 0 + 0 ) ) |
| 101 | 00id | |- ( 0 + 0 ) = 0 |
|
| 102 | 100 101 | eqtrdi | |- ( ph -> ( ( P pCnt S ) + ( P pCnt U ) ) = 0 ) |
| 103 | 91 102 | eqtrd | |- ( ph -> ( P pCnt ( S x. U ) ) = 0 ) |
| 104 | 103 | oveq2d | |- ( ph -> ( ( P pCnt ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) ) - ( P pCnt ( S x. U ) ) ) = ( ( P pCnt ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) ) - 0 ) ) |
| 105 | 104 | adantr | |- ( ( ph /\ ( A + B ) =/= 0 ) -> ( ( P pCnt ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) ) - ( P pCnt ( S x. U ) ) ) = ( ( P pCnt ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) ) - 0 ) ) |
| 106 | pczcl | |- ( ( P e. Prime /\ ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) e. ZZ /\ ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) =/= 0 ) ) -> ( P pCnt ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) ) e. NN0 ) |
|
| 107 | 40 51 86 106 | syl12anc | |- ( ( ph /\ ( A + B ) =/= 0 ) -> ( P pCnt ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) ) e. NN0 ) |
| 108 | 107 | nn0cnd | |- ( ( ph /\ ( A + B ) =/= 0 ) -> ( P pCnt ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) ) e. CC ) |
| 109 | 108 | subid1d | |- ( ( ph /\ ( A + B ) =/= 0 ) -> ( ( P pCnt ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) ) - 0 ) = ( P pCnt ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) ) ) |
| 110 | 105 109 | eqtrd | |- ( ( ph /\ ( A + B ) =/= 0 ) -> ( ( P pCnt ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) ) - ( P pCnt ( S x. U ) ) ) = ( P pCnt ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) ) ) |
| 111 | 39 89 110 | 3eqtrd | |- ( ( ph /\ ( A + B ) =/= 0 ) -> ( P pCnt ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) = ( P pCnt ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) ) ) |
| 112 | 111 107 | eqeltrd | |- ( ( ph /\ ( A + B ) =/= 0 ) -> ( P pCnt ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) e. NN0 ) |
| 113 | nn0addge1 | |- ( ( M e. RR /\ ( P pCnt ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) e. NN0 ) -> M <_ ( M + ( P pCnt ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) ) |
|
| 114 | 14 112 113 | syl2anc | |- ( ( ph /\ ( A + B ) =/= 0 ) -> M <_ ( M + ( P pCnt ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) ) |
| 115 | nnq | |- ( P e. NN -> P e. QQ ) |
|
| 116 | 16 115 | syl | |- ( ph -> P e. QQ ) |
| 117 | qexpclz | |- ( ( P e. QQ /\ P =/= 0 /\ M e. ZZ ) -> ( P ^ M ) e. QQ ) |
|
| 118 | 116 18 12 117 | syl3anc | |- ( ph -> ( P ^ M ) e. QQ ) |
| 119 | 118 | adantr | |- ( ( ph /\ ( A + B ) =/= 0 ) -> ( P ^ M ) e. QQ ) |
| 120 | 17 18 12 | expne0d | |- ( ph -> ( P ^ M ) =/= 0 ) |
| 121 | 120 | adantr | |- ( ( ph /\ ( A + B ) =/= 0 ) -> ( P ^ M ) =/= 0 ) |
| 122 | znq | |- ( ( R e. ZZ /\ S e. NN ) -> ( R / S ) e. QQ ) |
|
| 123 | 30 32 122 | syl2anc | |- ( ph -> ( R / S ) e. QQ ) |
| 124 | qexpclz | |- ( ( P e. QQ /\ P =/= 0 /\ ( N - M ) e. ZZ ) -> ( P ^ ( N - M ) ) e. QQ ) |
|
| 125 | 116 18 21 124 | syl3anc | |- ( ph -> ( P ^ ( N - M ) ) e. QQ ) |
| 126 | znq | |- ( ( T e. ZZ /\ U e. NN ) -> ( T / U ) e. QQ ) |
|
| 127 | 23 25 126 | syl2anc | |- ( ph -> ( T / U ) e. QQ ) |
| 128 | qmulcl | |- ( ( ( P ^ ( N - M ) ) e. QQ /\ ( T / U ) e. QQ ) -> ( ( P ^ ( N - M ) ) x. ( T / U ) ) e. QQ ) |
|
| 129 | 125 127 128 | syl2anc | |- ( ph -> ( ( P ^ ( N - M ) ) x. ( T / U ) ) e. QQ ) |
| 130 | qaddcl | |- ( ( ( R / S ) e. QQ /\ ( ( P ^ ( N - M ) ) x. ( T / U ) ) e. QQ ) -> ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) e. QQ ) |
|
| 131 | 123 129 130 | syl2anc | |- ( ph -> ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) e. QQ ) |
| 132 | 131 | adantr | |- ( ( ph /\ ( A + B ) =/= 0 ) -> ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) e. QQ ) |
| 133 | 74 57 | sylbird | |- ( ph -> ( ( A + B ) =/= 0 -> ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) =/= 0 ) ) |
| 134 | 133 | imp | |- ( ( ph /\ ( A + B ) =/= 0 ) -> ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) =/= 0 ) |
| 135 | pcqmul | |- ( ( P e. Prime /\ ( ( P ^ M ) e. QQ /\ ( P ^ M ) =/= 0 ) /\ ( ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) e. QQ /\ ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) =/= 0 ) ) -> ( P pCnt ( ( P ^ M ) x. ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) = ( ( P pCnt ( P ^ M ) ) + ( P pCnt ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) ) |
|
| 136 | 40 119 121 132 134 135 | syl122anc | |- ( ( ph /\ ( A + B ) =/= 0 ) -> ( P pCnt ( ( P ^ M ) x. ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) = ( ( P pCnt ( P ^ M ) ) + ( P pCnt ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) ) |
| 137 | 73 | oveq2d | |- ( ph -> ( P pCnt ( ( P ^ M ) x. ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) = ( P pCnt ( A + B ) ) ) |
| 138 | 137 | adantr | |- ( ( ph /\ ( A + B ) =/= 0 ) -> ( P pCnt ( ( P ^ M ) x. ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) = ( P pCnt ( A + B ) ) ) |
| 139 | pcid | |- ( ( P e. Prime /\ M e. ZZ ) -> ( P pCnt ( P ^ M ) ) = M ) |
|
| 140 | 1 12 139 | syl2anc | |- ( ph -> ( P pCnt ( P ^ M ) ) = M ) |
| 141 | 140 | oveq1d | |- ( ph -> ( ( P pCnt ( P ^ M ) ) + ( P pCnt ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) = ( M + ( P pCnt ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) ) |
| 142 | 141 | adantr | |- ( ( ph /\ ( A + B ) =/= 0 ) -> ( ( P pCnt ( P ^ M ) ) + ( P pCnt ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) = ( M + ( P pCnt ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) ) |
| 143 | 136 138 142 | 3eqtr3d | |- ( ( ph /\ ( A + B ) =/= 0 ) -> ( P pCnt ( A + B ) ) = ( M + ( P pCnt ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) ) |
| 144 | 114 143 | breqtrrd | |- ( ( ph /\ ( A + B ) =/= 0 ) -> M <_ ( P pCnt ( A + B ) ) ) |
| 145 | 13 | rexrd | |- ( ph -> M e. RR* ) |
| 146 | pnfge | |- ( M e. RR* -> M <_ +oo ) |
|
| 147 | 145 146 | syl | |- ( ph -> M <_ +oo ) |
| 148 | pc0 | |- ( P e. Prime -> ( P pCnt 0 ) = +oo ) |
|
| 149 | 1 148 | syl | |- ( ph -> ( P pCnt 0 ) = +oo ) |
| 150 | 147 149 | breqtrrd | |- ( ph -> M <_ ( P pCnt 0 ) ) |
| 151 | 10 144 150 | pm2.61ne | |- ( ph -> M <_ ( P pCnt ( A + B ) ) ) |