This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the general prime count function. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcqcl | |- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> ( P pCnt N ) e. ZZ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl | |- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> N e. QQ ) |
|
| 2 | elq | |- ( N e. QQ <-> E. x e. ZZ E. y e. NN N = ( x / y ) ) |
|
| 3 | 1 2 | sylib | |- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> E. x e. ZZ E. y e. NN N = ( x / y ) ) |
| 4 | nncn | |- ( y e. NN -> y e. CC ) |
|
| 5 | nnne0 | |- ( y e. NN -> y =/= 0 ) |
|
| 6 | 4 5 | div0d | |- ( y e. NN -> ( 0 / y ) = 0 ) |
| 7 | 6 | ad2antll | |- ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) -> ( 0 / y ) = 0 ) |
| 8 | oveq1 | |- ( x = 0 -> ( x / y ) = ( 0 / y ) ) |
|
| 9 | 8 | eqeq1d | |- ( x = 0 -> ( ( x / y ) = 0 <-> ( 0 / y ) = 0 ) ) |
| 10 | 7 9 | syl5ibrcom | |- ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) -> ( x = 0 -> ( x / y ) = 0 ) ) |
| 11 | 10 | necon3d | |- ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) -> ( ( x / y ) =/= 0 -> x =/= 0 ) ) |
| 12 | an32 | |- ( ( ( x e. ZZ /\ y e. NN ) /\ x =/= 0 ) <-> ( ( x e. ZZ /\ x =/= 0 ) /\ y e. NN ) ) |
|
| 13 | pcdiv | |- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) /\ y e. NN ) -> ( P pCnt ( x / y ) ) = ( ( P pCnt x ) - ( P pCnt y ) ) ) |
|
| 14 | pczcl | |- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) ) -> ( P pCnt x ) e. NN0 ) |
|
| 15 | 14 | nn0zd | |- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) ) -> ( P pCnt x ) e. ZZ ) |
| 16 | 15 | 3adant3 | |- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) /\ y e. NN ) -> ( P pCnt x ) e. ZZ ) |
| 17 | nnz | |- ( y e. NN -> y e. ZZ ) |
|
| 18 | 17 5 | jca | |- ( y e. NN -> ( y e. ZZ /\ y =/= 0 ) ) |
| 19 | pczcl | |- ( ( P e. Prime /\ ( y e. ZZ /\ y =/= 0 ) ) -> ( P pCnt y ) e. NN0 ) |
|
| 20 | 19 | nn0zd | |- ( ( P e. Prime /\ ( y e. ZZ /\ y =/= 0 ) ) -> ( P pCnt y ) e. ZZ ) |
| 21 | 18 20 | sylan2 | |- ( ( P e. Prime /\ y e. NN ) -> ( P pCnt y ) e. ZZ ) |
| 22 | 21 | 3adant2 | |- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) /\ y e. NN ) -> ( P pCnt y ) e. ZZ ) |
| 23 | 16 22 | zsubcld | |- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) /\ y e. NN ) -> ( ( P pCnt x ) - ( P pCnt y ) ) e. ZZ ) |
| 24 | 13 23 | eqeltrd | |- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) /\ y e. NN ) -> ( P pCnt ( x / y ) ) e. ZZ ) |
| 25 | 24 | 3expb | |- ( ( P e. Prime /\ ( ( x e. ZZ /\ x =/= 0 ) /\ y e. NN ) ) -> ( P pCnt ( x / y ) ) e. ZZ ) |
| 26 | 12 25 | sylan2b | |- ( ( P e. Prime /\ ( ( x e. ZZ /\ y e. NN ) /\ x =/= 0 ) ) -> ( P pCnt ( x / y ) ) e. ZZ ) |
| 27 | 26 | expr | |- ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) -> ( x =/= 0 -> ( P pCnt ( x / y ) ) e. ZZ ) ) |
| 28 | 11 27 | syld | |- ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) -> ( ( x / y ) =/= 0 -> ( P pCnt ( x / y ) ) e. ZZ ) ) |
| 29 | neeq1 | |- ( N = ( x / y ) -> ( N =/= 0 <-> ( x / y ) =/= 0 ) ) |
|
| 30 | oveq2 | |- ( N = ( x / y ) -> ( P pCnt N ) = ( P pCnt ( x / y ) ) ) |
|
| 31 | 30 | eleq1d | |- ( N = ( x / y ) -> ( ( P pCnt N ) e. ZZ <-> ( P pCnt ( x / y ) ) e. ZZ ) ) |
| 32 | 29 31 | imbi12d | |- ( N = ( x / y ) -> ( ( N =/= 0 -> ( P pCnt N ) e. ZZ ) <-> ( ( x / y ) =/= 0 -> ( P pCnt ( x / y ) ) e. ZZ ) ) ) |
| 33 | 28 32 | syl5ibrcom | |- ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) -> ( N = ( x / y ) -> ( N =/= 0 -> ( P pCnt N ) e. ZZ ) ) ) |
| 34 | 33 | com23 | |- ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) -> ( N =/= 0 -> ( N = ( x / y ) -> ( P pCnt N ) e. ZZ ) ) ) |
| 35 | 34 | impancom | |- ( ( P e. Prime /\ N =/= 0 ) -> ( ( x e. ZZ /\ y e. NN ) -> ( N = ( x / y ) -> ( P pCnt N ) e. ZZ ) ) ) |
| 36 | 35 | adantrl | |- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> ( ( x e. ZZ /\ y e. NN ) -> ( N = ( x / y ) -> ( P pCnt N ) e. ZZ ) ) ) |
| 37 | 36 | rexlimdvv | |- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> ( E. x e. ZZ E. y e. NN N = ( x / y ) -> ( P pCnt N ) e. ZZ ) ) |
| 38 | 3 37 | mpd | |- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> ( P pCnt N ) e. ZZ ) |