This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value metric determines a metric space on the complex numbers. This theorem provides a link between complex numbers and metrics spaces, making metric space theorems available for use with complex numbers. (Contributed by FL, 9-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnmet | |- ( abs o. - ) e. ( Met ` CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex | |- CC e. _V |
|
| 2 | absf | |- abs : CC --> RR |
|
| 3 | subf | |- - : ( CC X. CC ) --> CC |
|
| 4 | fco | |- ( ( abs : CC --> RR /\ - : ( CC X. CC ) --> CC ) -> ( abs o. - ) : ( CC X. CC ) --> RR ) |
|
| 5 | 2 3 4 | mp2an | |- ( abs o. - ) : ( CC X. CC ) --> RR |
| 6 | subcl | |- ( ( x e. CC /\ y e. CC ) -> ( x - y ) e. CC ) |
|
| 7 | 6 | abs00ad | |- ( ( x e. CC /\ y e. CC ) -> ( ( abs ` ( x - y ) ) = 0 <-> ( x - y ) = 0 ) ) |
| 8 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 9 | 8 | cnmetdval | |- ( ( x e. CC /\ y e. CC ) -> ( x ( abs o. - ) y ) = ( abs ` ( x - y ) ) ) |
| 10 | 9 | eqcomd | |- ( ( x e. CC /\ y e. CC ) -> ( abs ` ( x - y ) ) = ( x ( abs o. - ) y ) ) |
| 11 | 10 | eqeq1d | |- ( ( x e. CC /\ y e. CC ) -> ( ( abs ` ( x - y ) ) = 0 <-> ( x ( abs o. - ) y ) = 0 ) ) |
| 12 | subeq0 | |- ( ( x e. CC /\ y e. CC ) -> ( ( x - y ) = 0 <-> x = y ) ) |
|
| 13 | 7 11 12 | 3bitr3d | |- ( ( x e. CC /\ y e. CC ) -> ( ( x ( abs o. - ) y ) = 0 <-> x = y ) ) |
| 14 | abs3dif | |- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( abs ` ( x - y ) ) <_ ( ( abs ` ( x - z ) ) + ( abs ` ( z - y ) ) ) ) |
|
| 15 | abssub | |- ( ( x e. CC /\ z e. CC ) -> ( abs ` ( x - z ) ) = ( abs ` ( z - x ) ) ) |
|
| 16 | 15 | oveq1d | |- ( ( x e. CC /\ z e. CC ) -> ( ( abs ` ( x - z ) ) + ( abs ` ( z - y ) ) ) = ( ( abs ` ( z - x ) ) + ( abs ` ( z - y ) ) ) ) |
| 17 | 16 | 3adant2 | |- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( abs ` ( x - z ) ) + ( abs ` ( z - y ) ) ) = ( ( abs ` ( z - x ) ) + ( abs ` ( z - y ) ) ) ) |
| 18 | 14 17 | breqtrd | |- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( abs ` ( x - y ) ) <_ ( ( abs ` ( z - x ) ) + ( abs ` ( z - y ) ) ) ) |
| 19 | 9 | 3adant3 | |- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( x ( abs o. - ) y ) = ( abs ` ( x - y ) ) ) |
| 20 | 8 | cnmetdval | |- ( ( z e. CC /\ x e. CC ) -> ( z ( abs o. - ) x ) = ( abs ` ( z - x ) ) ) |
| 21 | 20 | 3adant3 | |- ( ( z e. CC /\ x e. CC /\ y e. CC ) -> ( z ( abs o. - ) x ) = ( abs ` ( z - x ) ) ) |
| 22 | 8 | cnmetdval | |- ( ( z e. CC /\ y e. CC ) -> ( z ( abs o. - ) y ) = ( abs ` ( z - y ) ) ) |
| 23 | 22 | 3adant2 | |- ( ( z e. CC /\ x e. CC /\ y e. CC ) -> ( z ( abs o. - ) y ) = ( abs ` ( z - y ) ) ) |
| 24 | 21 23 | oveq12d | |- ( ( z e. CC /\ x e. CC /\ y e. CC ) -> ( ( z ( abs o. - ) x ) + ( z ( abs o. - ) y ) ) = ( ( abs ` ( z - x ) ) + ( abs ` ( z - y ) ) ) ) |
| 25 | 24 | 3coml | |- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( z ( abs o. - ) x ) + ( z ( abs o. - ) y ) ) = ( ( abs ` ( z - x ) ) + ( abs ` ( z - y ) ) ) ) |
| 26 | 18 19 25 | 3brtr4d | |- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( x ( abs o. - ) y ) <_ ( ( z ( abs o. - ) x ) + ( z ( abs o. - ) y ) ) ) |
| 27 | 1 5 13 26 | ismeti | |- ( abs o. - ) e. ( Met ` CC ) |