This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A zero-valued infinite series is equal to the constant zero function. (Contributed by Mario Carneiro, 8-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ser0.1 | |- Z = ( ZZ>= ` M ) |
|
| Assertion | ser0f | |- ( M e. ZZ -> seq M ( + , ( Z X. { 0 } ) ) = ( Z X. { 0 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ser0.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | 1 | ser0 | |- ( k e. Z -> ( seq M ( + , ( Z X. { 0 } ) ) ` k ) = 0 ) |
| 3 | c0ex | |- 0 e. _V |
|
| 4 | 3 | fvconst2 | |- ( k e. Z -> ( ( Z X. { 0 } ) ` k ) = 0 ) |
| 5 | 2 4 | eqtr4d | |- ( k e. Z -> ( seq M ( + , ( Z X. { 0 } ) ) ` k ) = ( ( Z X. { 0 } ) ` k ) ) |
| 6 | 5 | rgen | |- A. k e. Z ( seq M ( + , ( Z X. { 0 } ) ) ` k ) = ( ( Z X. { 0 } ) ` k ) |
| 7 | seqfn | |- ( M e. ZZ -> seq M ( + , ( Z X. { 0 } ) ) Fn ( ZZ>= ` M ) ) |
|
| 8 | 1 | fneq2i | |- ( seq M ( + , ( Z X. { 0 } ) ) Fn Z <-> seq M ( + , ( Z X. { 0 } ) ) Fn ( ZZ>= ` M ) ) |
| 9 | 7 8 | sylibr | |- ( M e. ZZ -> seq M ( + , ( Z X. { 0 } ) ) Fn Z ) |
| 10 | 3 | fconst | |- ( Z X. { 0 } ) : Z --> { 0 } |
| 11 | ffn | |- ( ( Z X. { 0 } ) : Z --> { 0 } -> ( Z X. { 0 } ) Fn Z ) |
|
| 12 | 10 11 | ax-mp | |- ( Z X. { 0 } ) Fn Z |
| 13 | eqfnfv | |- ( ( seq M ( + , ( Z X. { 0 } ) ) Fn Z /\ ( Z X. { 0 } ) Fn Z ) -> ( seq M ( + , ( Z X. { 0 } ) ) = ( Z X. { 0 } ) <-> A. k e. Z ( seq M ( + , ( Z X. { 0 } ) ) ` k ) = ( ( Z X. { 0 } ) ` k ) ) ) |
|
| 14 | 9 12 13 | sylancl | |- ( M e. ZZ -> ( seq M ( + , ( Z X. { 0 } ) ) = ( Z X. { 0 } ) <-> A. k e. Z ( seq M ( + , ( Z X. { 0 } ) ) ` k ) = ( ( Z X. { 0 } ) ` k ) ) ) |
| 15 | 6 14 | mpbiri | |- ( M e. ZZ -> seq M ( + , ( Z X. { 0 } ) ) = ( Z X. { 0 } ) ) |