This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A diagonal functor for opposite categories is the opposite functor of the diagonal functor for original categories post-composed by an isomorphism ( fucoppc ). (Contributed by Zhi Wang, 19-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppfdiag.o | |- O = ( oppCat ` C ) |
|
| oppfdiag.p | |- P = ( oppCat ` D ) |
||
| oppfdiag.l | |- L = ( C DiagFunc D ) |
||
| oppfdiag.c | |- ( ph -> C e. Cat ) |
||
| oppfdiag.d | |- ( ph -> D e. Cat ) |
||
| oppfdiag.f | |- ( ph -> F = ( oppFunc |` ( D Func C ) ) ) |
||
| oppfdiag.n | |- N = ( D Nat C ) |
||
| oppfdiag.g | |- ( ph -> G = ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n N m ) ) ) ) |
||
| Assertion | oppfdiag | |- ( ph -> ( <. F , G >. o.func ( oppFunc ` L ) ) = ( O DiagFunc P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppfdiag.o | |- O = ( oppCat ` C ) |
|
| 2 | oppfdiag.p | |- P = ( oppCat ` D ) |
|
| 3 | oppfdiag.l | |- L = ( C DiagFunc D ) |
|
| 4 | oppfdiag.c | |- ( ph -> C e. Cat ) |
|
| 5 | oppfdiag.d | |- ( ph -> D e. Cat ) |
|
| 6 | oppfdiag.f | |- ( ph -> F = ( oppFunc |` ( D Func C ) ) ) |
|
| 7 | oppfdiag.n | |- N = ( D Nat C ) |
|
| 8 | oppfdiag.g | |- ( ph -> G = ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n N m ) ) ) ) |
|
| 9 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 10 | 1 9 | oppcbas | |- ( Base ` C ) = ( Base ` O ) |
| 11 | eqid | |- ( P FuncCat O ) = ( P FuncCat O ) |
|
| 12 | 11 | fucbas | |- ( P Func O ) = ( Base ` ( P FuncCat O ) ) |
| 13 | eqid | |- ( oppCat ` ( D FuncCat C ) ) = ( oppCat ` ( D FuncCat C ) ) |
|
| 14 | eqid | |- ( D FuncCat C ) = ( D FuncCat C ) |
|
| 15 | 3 4 5 14 | diagcl | |- ( ph -> L e. ( C Func ( D FuncCat C ) ) ) |
| 16 | 1 13 15 | oppfoppc2 | |- ( ph -> ( oppFunc ` L ) e. ( O Func ( oppCat ` ( D FuncCat C ) ) ) ) |
| 17 | 2 1 14 13 11 7 6 8 5 4 | fucoppcfunc | |- ( ph -> F ( ( oppCat ` ( D FuncCat C ) ) Func ( P FuncCat O ) ) G ) |
| 18 | df-br | |- ( F ( ( oppCat ` ( D FuncCat C ) ) Func ( P FuncCat O ) ) G <-> <. F , G >. e. ( ( oppCat ` ( D FuncCat C ) ) Func ( P FuncCat O ) ) ) |
|
| 19 | 17 18 | sylib | |- ( ph -> <. F , G >. e. ( ( oppCat ` ( D FuncCat C ) ) Func ( P FuncCat O ) ) ) |
| 20 | 16 19 | cofucl | |- ( ph -> ( <. F , G >. o.func ( oppFunc ` L ) ) e. ( O Func ( P FuncCat O ) ) ) |
| 21 | 20 | func1st2nd | |- ( ph -> ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ( O Func ( P FuncCat O ) ) ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ) |
| 22 | 10 12 21 | funcf1 | |- ( ph -> ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) : ( Base ` C ) --> ( P Func O ) ) |
| 23 | 22 | ffnd | |- ( ph -> ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) Fn ( Base ` C ) ) |
| 24 | eqid | |- ( O DiagFunc P ) = ( O DiagFunc P ) |
|
| 25 | 1 | oppccat | |- ( C e. Cat -> O e. Cat ) |
| 26 | 4 25 | syl | |- ( ph -> O e. Cat ) |
| 27 | 2 | oppccat | |- ( D e. Cat -> P e. Cat ) |
| 28 | 5 27 | syl | |- ( ph -> P e. Cat ) |
| 29 | 24 26 28 11 | diagcl | |- ( ph -> ( O DiagFunc P ) e. ( O Func ( P FuncCat O ) ) ) |
| 30 | 29 | func1st2nd | |- ( ph -> ( 1st ` ( O DiagFunc P ) ) ( O Func ( P FuncCat O ) ) ( 2nd ` ( O DiagFunc P ) ) ) |
| 31 | 10 12 30 | funcf1 | |- ( ph -> ( 1st ` ( O DiagFunc P ) ) : ( Base ` C ) --> ( P Func O ) ) |
| 32 | 31 | ffnd | |- ( ph -> ( 1st ` ( O DiagFunc P ) ) Fn ( Base ` C ) ) |
| 33 | 16 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( oppFunc ` L ) e. ( O Func ( oppCat ` ( D FuncCat C ) ) ) ) |
| 34 | 19 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> <. F , G >. e. ( ( oppCat ` ( D FuncCat C ) ) Func ( P FuncCat O ) ) ) |
| 35 | simpr | |- ( ( ph /\ x e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
|
| 36 | 10 33 34 35 | cofu1 | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ` x ) = ( ( 1st ` <. F , G >. ) ` ( ( 1st ` ( oppFunc ` L ) ) ` x ) ) ) |
| 37 | 17 | func1st | |- ( ph -> ( 1st ` <. F , G >. ) = F ) |
| 38 | 15 | oppf1 | |- ( ph -> ( 1st ` ( oppFunc ` L ) ) = ( 1st ` L ) ) |
| 39 | 38 | fveq1d | |- ( ph -> ( ( 1st ` ( oppFunc ` L ) ) ` x ) = ( ( 1st ` L ) ` x ) ) |
| 40 | 37 39 | fveq12d | |- ( ph -> ( ( 1st ` <. F , G >. ) ` ( ( 1st ` ( oppFunc ` L ) ) ` x ) ) = ( F ` ( ( 1st ` L ) ` x ) ) ) |
| 41 | 40 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` <. F , G >. ) ` ( ( 1st ` ( oppFunc ` L ) ) ` x ) ) = ( F ` ( ( 1st ` L ) ` x ) ) ) |
| 42 | 4 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> C e. Cat ) |
| 43 | 5 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> D e. Cat ) |
| 44 | 6 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> F = ( oppFunc |` ( D Func C ) ) ) |
| 45 | 1 2 3 42 43 44 9 35 | oppfdiag1 | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( F ` ( ( 1st ` L ) ` x ) ) = ( ( 1st ` ( O DiagFunc P ) ) ` x ) ) |
| 46 | 36 41 45 | 3eqtrd | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ` x ) = ( ( 1st ` ( O DiagFunc P ) ) ` x ) ) |
| 47 | 23 32 46 | eqfnfvd | |- ( ph -> ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) = ( 1st ` ( O DiagFunc P ) ) ) |
| 48 | 10 21 | funcfn2 | |- ( ph -> ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 49 | 10 30 | funcfn2 | |- ( ph -> ( 2nd ` ( O DiagFunc P ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 50 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 51 | 50 1 | oppchom | |- ( x ( Hom ` O ) y ) = ( y ( Hom ` C ) x ) |
| 52 | 51 | a1i | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( Hom ` O ) y ) = ( y ( Hom ` C ) x ) ) |
| 53 | eqid | |- ( Hom ` O ) = ( Hom ` O ) |
|
| 54 | eqid | |- ( P Nat O ) = ( P Nat O ) |
|
| 55 | 11 54 | fuchom | |- ( P Nat O ) = ( Hom ` ( P FuncCat O ) ) |
| 56 | 21 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ( O Func ( P FuncCat O ) ) ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ) |
| 57 | simprl | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
|
| 58 | simprr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
|
| 59 | 10 53 55 56 57 58 | funcf2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) y ) : ( x ( Hom ` O ) y ) --> ( ( ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ` x ) ( P Nat O ) ( ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ` y ) ) ) |
| 60 | 52 59 | feq2dd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) y ) : ( y ( Hom ` C ) x ) --> ( ( ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ` x ) ( P Nat O ) ( ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ` y ) ) ) |
| 61 | 60 | ffnd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) y ) Fn ( y ( Hom ` C ) x ) ) |
| 62 | 30 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` ( O DiagFunc P ) ) ( O Func ( P FuncCat O ) ) ( 2nd ` ( O DiagFunc P ) ) ) |
| 63 | 10 53 55 62 57 58 | funcf2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( O DiagFunc P ) ) y ) : ( x ( Hom ` O ) y ) --> ( ( ( 1st ` ( O DiagFunc P ) ) ` x ) ( P Nat O ) ( ( 1st ` ( O DiagFunc P ) ) ` y ) ) ) |
| 64 | 52 63 | feq2dd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( O DiagFunc P ) ) y ) : ( y ( Hom ` C ) x ) --> ( ( ( 1st ` ( O DiagFunc P ) ) ` x ) ( P Nat O ) ( ( 1st ` ( O DiagFunc P ) ) ` y ) ) ) |
| 65 | 64 | ffnd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( O DiagFunc P ) ) y ) Fn ( y ( Hom ` C ) x ) ) |
| 66 | 16 | ad2antrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> ( oppFunc ` L ) e. ( O Func ( oppCat ` ( D FuncCat C ) ) ) ) |
| 67 | 19 | ad2antrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> <. F , G >. e. ( ( oppCat ` ( D FuncCat C ) ) Func ( P FuncCat O ) ) ) |
| 68 | 57 | adantr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> x e. ( Base ` C ) ) |
| 69 | 58 | adantr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> y e. ( Base ` C ) ) |
| 70 | simpr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> f e. ( y ( Hom ` C ) x ) ) |
|
| 71 | 70 51 | eleqtrrdi | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> f e. ( x ( Hom ` O ) y ) ) |
| 72 | 10 66 67 68 69 53 71 | cofu2 | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> ( ( x ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) y ) ` f ) = ( ( ( ( 1st ` ( oppFunc ` L ) ) ` x ) ( 2nd ` <. F , G >. ) ( ( 1st ` ( oppFunc ` L ) ) ` y ) ) ` ( ( x ( 2nd ` ( oppFunc ` L ) ) y ) ` f ) ) ) |
| 73 | 17 | func2nd | |- ( ph -> ( 2nd ` <. F , G >. ) = G ) |
| 74 | 38 | fveq1d | |- ( ph -> ( ( 1st ` ( oppFunc ` L ) ) ` y ) = ( ( 1st ` L ) ` y ) ) |
| 75 | 73 39 74 | oveq123d | |- ( ph -> ( ( ( 1st ` ( oppFunc ` L ) ) ` x ) ( 2nd ` <. F , G >. ) ( ( 1st ` ( oppFunc ` L ) ) ` y ) ) = ( ( ( 1st ` L ) ` x ) G ( ( 1st ` L ) ` y ) ) ) |
| 76 | 15 | oppf2 | |- ( ph -> ( x ( 2nd ` ( oppFunc ` L ) ) y ) = ( y ( 2nd ` L ) x ) ) |
| 77 | 76 | fveq1d | |- ( ph -> ( ( x ( 2nd ` ( oppFunc ` L ) ) y ) ` f ) = ( ( y ( 2nd ` L ) x ) ` f ) ) |
| 78 | 75 77 | fveq12d | |- ( ph -> ( ( ( ( 1st ` ( oppFunc ` L ) ) ` x ) ( 2nd ` <. F , G >. ) ( ( 1st ` ( oppFunc ` L ) ) ` y ) ) ` ( ( x ( 2nd ` ( oppFunc ` L ) ) y ) ` f ) ) = ( ( ( ( 1st ` L ) ` x ) G ( ( 1st ` L ) ` y ) ) ` ( ( y ( 2nd ` L ) x ) ` f ) ) ) |
| 79 | 78 | ad2antrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> ( ( ( ( 1st ` ( oppFunc ` L ) ) ` x ) ( 2nd ` <. F , G >. ) ( ( 1st ` ( oppFunc ` L ) ) ` y ) ) ` ( ( x ( 2nd ` ( oppFunc ` L ) ) y ) ` f ) ) = ( ( ( ( 1st ` L ) ` x ) G ( ( 1st ` L ) ` y ) ) ` ( ( y ( 2nd ` L ) x ) ` f ) ) ) |
| 80 | 8 | ad2antrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> G = ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n N m ) ) ) ) |
| 81 | 4 | ad2antrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> C e. Cat ) |
| 82 | 5 | ad2antrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> D e. Cat ) |
| 83 | eqid | |- ( ( 1st ` L ) ` x ) = ( ( 1st ` L ) ` x ) |
|
| 84 | 3 81 82 9 68 83 | diag1cl | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> ( ( 1st ` L ) ` x ) e. ( D Func C ) ) |
| 85 | eqid | |- ( ( 1st ` L ) ` y ) = ( ( 1st ` L ) ` y ) |
|
| 86 | 3 81 82 9 69 85 | diag1cl | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> ( ( 1st ` L ) ` y ) e. ( D Func C ) ) |
| 87 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 88 | 3 9 87 50 81 82 69 68 70 | diag2 | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> ( ( y ( 2nd ` L ) x ) ` f ) = ( ( Base ` D ) X. { f } ) ) |
| 89 | 3 9 87 50 81 82 69 68 70 7 | diag2cl | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> ( ( Base ` D ) X. { f } ) e. ( ( ( 1st ` L ) ` y ) N ( ( 1st ` L ) ` x ) ) ) |
| 90 | 80 84 86 88 89 | opf2 | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> ( ( ( ( 1st ` L ) ` x ) G ( ( 1st ` L ) ` y ) ) ` ( ( y ( 2nd ` L ) x ) ` f ) ) = ( ( Base ` D ) X. { f } ) ) |
| 91 | 72 79 90 | 3eqtrd | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> ( ( x ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) y ) ` f ) = ( ( Base ` D ) X. { f } ) ) |
| 92 | 2 87 | oppcbas | |- ( Base ` D ) = ( Base ` P ) |
| 93 | 81 25 | syl | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> O e. Cat ) |
| 94 | 82 27 | syl | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> P e. Cat ) |
| 95 | 24 10 92 53 93 94 68 69 71 | diag2 | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> ( ( x ( 2nd ` ( O DiagFunc P ) ) y ) ` f ) = ( ( Base ` D ) X. { f } ) ) |
| 96 | 91 95 | eqtr4d | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> ( ( x ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) y ) ` f ) = ( ( x ( 2nd ` ( O DiagFunc P ) ) y ) ` f ) ) |
| 97 | 61 65 96 | eqfnfvd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) y ) = ( x ( 2nd ` ( O DiagFunc P ) ) y ) ) |
| 98 | 48 49 97 | eqfnovd | |- ( ph -> ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) = ( 2nd ` ( O DiagFunc P ) ) ) |
| 99 | 47 98 | opeq12d | |- ( ph -> <. ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) , ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) >. = <. ( 1st ` ( O DiagFunc P ) ) , ( 2nd ` ( O DiagFunc P ) ) >. ) |
| 100 | relfunc | |- Rel ( O Func ( P FuncCat O ) ) |
|
| 101 | 1st2nd | |- ( ( Rel ( O Func ( P FuncCat O ) ) /\ ( <. F , G >. o.func ( oppFunc ` L ) ) e. ( O Func ( P FuncCat O ) ) ) -> ( <. F , G >. o.func ( oppFunc ` L ) ) = <. ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) , ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) >. ) |
|
| 102 | 100 20 101 | sylancr | |- ( ph -> ( <. F , G >. o.func ( oppFunc ` L ) ) = <. ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) , ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) >. ) |
| 103 | 1st2nd | |- ( ( Rel ( O Func ( P FuncCat O ) ) /\ ( O DiagFunc P ) e. ( O Func ( P FuncCat O ) ) ) -> ( O DiagFunc P ) = <. ( 1st ` ( O DiagFunc P ) ) , ( 2nd ` ( O DiagFunc P ) ) >. ) |
|
| 104 | 100 29 103 | sylancr | |- ( ph -> ( O DiagFunc P ) = <. ( 1st ` ( O DiagFunc P ) ) , ( 2nd ` ( O DiagFunc P ) ) >. ) |
| 105 | 99 102 104 | 3eqtr4d | |- ( ph -> ( <. F , G >. o.func ( oppFunc ` L ) ) = ( O DiagFunc P ) ) |