This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constant functor for opposite categories is the opposite functor of the constant functor for original categories. (Contributed by Zhi Wang, 19-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppfdiag.o | |- O = ( oppCat ` C ) |
|
| oppfdiag.p | |- P = ( oppCat ` D ) |
||
| oppfdiag.l | |- L = ( C DiagFunc D ) |
||
| oppfdiag.c | |- ( ph -> C e. Cat ) |
||
| oppfdiag.d | |- ( ph -> D e. Cat ) |
||
| oppfdiag1.f | |- ( ph -> F = ( oppFunc |` ( D Func C ) ) ) |
||
| oppfdiag1.a | |- A = ( Base ` C ) |
||
| oppfdiag1.x | |- ( ph -> X e. A ) |
||
| Assertion | oppfdiag1 | |- ( ph -> ( F ` ( ( 1st ` L ) ` X ) ) = ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppfdiag.o | |- O = ( oppCat ` C ) |
|
| 2 | oppfdiag.p | |- P = ( oppCat ` D ) |
|
| 3 | oppfdiag.l | |- L = ( C DiagFunc D ) |
|
| 4 | oppfdiag.c | |- ( ph -> C e. Cat ) |
|
| 5 | oppfdiag.d | |- ( ph -> D e. Cat ) |
|
| 6 | oppfdiag1.f | |- ( ph -> F = ( oppFunc |` ( D Func C ) ) ) |
|
| 7 | oppfdiag1.a | |- A = ( Base ` C ) |
|
| 8 | oppfdiag1.x | |- ( ph -> X e. A ) |
|
| 9 | eqid | |- ( D FuncCat C ) = ( D FuncCat C ) |
|
| 10 | 9 | fucbas | |- ( D Func C ) = ( Base ` ( D FuncCat C ) ) |
| 11 | 3 4 5 9 | diagcl | |- ( ph -> L e. ( C Func ( D FuncCat C ) ) ) |
| 12 | 11 | func1st2nd | |- ( ph -> ( 1st ` L ) ( C Func ( D FuncCat C ) ) ( 2nd ` L ) ) |
| 13 | 7 10 12 | funcf1 | |- ( ph -> ( 1st ` L ) : A --> ( D Func C ) ) |
| 14 | 13 8 | ffvelcdmd | |- ( ph -> ( ( 1st ` L ) ` X ) e. ( D Func C ) ) |
| 15 | 6 14 | opf11 | |- ( ph -> ( 1st ` ( F ` ( ( 1st ` L ) ` X ) ) ) = ( 1st ` ( ( 1st ` L ) ` X ) ) ) |
| 16 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 17 | 2 16 | oppcbas | |- ( Base ` D ) = ( Base ` P ) |
| 18 | 1 7 | oppcbas | |- A = ( Base ` O ) |
| 19 | eqid | |- ( oppCat ` ( D FuncCat C ) ) = ( oppCat ` ( D FuncCat C ) ) |
|
| 20 | 1 19 11 | oppfoppc2 | |- ( ph -> ( oppFunc ` L ) e. ( O Func ( oppCat ` ( D FuncCat C ) ) ) ) |
| 21 | eqid | |- ( P FuncCat O ) = ( P FuncCat O ) |
|
| 22 | eqid | |- ( D Nat C ) = ( D Nat C ) |
|
| 23 | eqidd | |- ( ph -> ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) = ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) ) |
|
| 24 | 2 1 9 19 21 22 6 23 5 4 | fucoppcfunc | |- ( ph -> F ( ( oppCat ` ( D FuncCat C ) ) Func ( P FuncCat O ) ) ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) ) |
| 25 | df-br | |- ( F ( ( oppCat ` ( D FuncCat C ) ) Func ( P FuncCat O ) ) ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) <-> <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. e. ( ( oppCat ` ( D FuncCat C ) ) Func ( P FuncCat O ) ) ) |
|
| 26 | 24 25 | sylib | |- ( ph -> <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. e. ( ( oppCat ` ( D FuncCat C ) ) Func ( P FuncCat O ) ) ) |
| 27 | 18 20 26 8 | cofu1 | |- ( ph -> ( ( 1st ` ( <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. o.func ( oppFunc ` L ) ) ) ` X ) = ( ( 1st ` <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. ) ` ( ( 1st ` ( oppFunc ` L ) ) ` X ) ) ) |
| 28 | 24 | func1st | |- ( ph -> ( 1st ` <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. ) = F ) |
| 29 | 11 | oppf1 | |- ( ph -> ( 1st ` ( oppFunc ` L ) ) = ( 1st ` L ) ) |
| 30 | 29 | fveq1d | |- ( ph -> ( ( 1st ` ( oppFunc ` L ) ) ` X ) = ( ( 1st ` L ) ` X ) ) |
| 31 | 28 30 | fveq12d | |- ( ph -> ( ( 1st ` <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. ) ` ( ( 1st ` ( oppFunc ` L ) ) ` X ) ) = ( F ` ( ( 1st ` L ) ` X ) ) ) |
| 32 | 27 31 | eqtrd | |- ( ph -> ( ( 1st ` ( <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. o.func ( oppFunc ` L ) ) ) ` X ) = ( F ` ( ( 1st ` L ) ` X ) ) ) |
| 33 | 21 | fucbas | |- ( P Func O ) = ( Base ` ( P FuncCat O ) ) |
| 34 | 20 26 | cofucl | |- ( ph -> ( <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. o.func ( oppFunc ` L ) ) e. ( O Func ( P FuncCat O ) ) ) |
| 35 | 34 | func1st2nd | |- ( ph -> ( 1st ` ( <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. o.func ( oppFunc ` L ) ) ) ( O Func ( P FuncCat O ) ) ( 2nd ` ( <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. o.func ( oppFunc ` L ) ) ) ) |
| 36 | 18 33 35 | funcf1 | |- ( ph -> ( 1st ` ( <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. o.func ( oppFunc ` L ) ) ) : A --> ( P Func O ) ) |
| 37 | 36 8 | ffvelcdmd | |- ( ph -> ( ( 1st ` ( <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. o.func ( oppFunc ` L ) ) ) ` X ) e. ( P Func O ) ) |
| 38 | 32 37 | eqeltrrd | |- ( ph -> ( F ` ( ( 1st ` L ) ` X ) ) e. ( P Func O ) ) |
| 39 | 38 | func1st2nd | |- ( ph -> ( 1st ` ( F ` ( ( 1st ` L ) ` X ) ) ) ( P Func O ) ( 2nd ` ( F ` ( ( 1st ` L ) ` X ) ) ) ) |
| 40 | 17 18 39 | funcf1 | |- ( ph -> ( 1st ` ( F ` ( ( 1st ` L ) ` X ) ) ) : ( Base ` D ) --> A ) |
| 41 | 15 40 | feq1dd | |- ( ph -> ( 1st ` ( ( 1st ` L ) ` X ) ) : ( Base ` D ) --> A ) |
| 42 | 41 | ffnd | |- ( ph -> ( 1st ` ( ( 1st ` L ) ` X ) ) Fn ( Base ` D ) ) |
| 43 | eqid | |- ( O DiagFunc P ) = ( O DiagFunc P ) |
|
| 44 | 1 | oppccat | |- ( C e. Cat -> O e. Cat ) |
| 45 | 4 44 | syl | |- ( ph -> O e. Cat ) |
| 46 | 2 | oppccat | |- ( D e. Cat -> P e. Cat ) |
| 47 | 5 46 | syl | |- ( ph -> P e. Cat ) |
| 48 | 43 45 47 21 | diagcl | |- ( ph -> ( O DiagFunc P ) e. ( O Func ( P FuncCat O ) ) ) |
| 49 | 48 | func1st2nd | |- ( ph -> ( 1st ` ( O DiagFunc P ) ) ( O Func ( P FuncCat O ) ) ( 2nd ` ( O DiagFunc P ) ) ) |
| 50 | 18 33 49 | funcf1 | |- ( ph -> ( 1st ` ( O DiagFunc P ) ) : A --> ( P Func O ) ) |
| 51 | 50 8 | ffvelcdmd | |- ( ph -> ( ( 1st ` ( O DiagFunc P ) ) ` X ) e. ( P Func O ) ) |
| 52 | 51 | func1st2nd | |- ( ph -> ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) ( P Func O ) ( 2nd ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) ) |
| 53 | 17 18 52 | funcf1 | |- ( ph -> ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) : ( Base ` D ) --> A ) |
| 54 | 53 | ffnd | |- ( ph -> ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) Fn ( Base ` D ) ) |
| 55 | 4 | adantr | |- ( ( ph /\ y e. ( Base ` D ) ) -> C e. Cat ) |
| 56 | 5 | adantr | |- ( ( ph /\ y e. ( Base ` D ) ) -> D e. Cat ) |
| 57 | 8 | adantr | |- ( ( ph /\ y e. ( Base ` D ) ) -> X e. A ) |
| 58 | eqid | |- ( ( 1st ` L ) ` X ) = ( ( 1st ` L ) ` X ) |
|
| 59 | simpr | |- ( ( ph /\ y e. ( Base ` D ) ) -> y e. ( Base ` D ) ) |
|
| 60 | 3 55 56 7 57 58 16 59 | diag11 | |- ( ( ph /\ y e. ( Base ` D ) ) -> ( ( 1st ` ( ( 1st ` L ) ` X ) ) ` y ) = X ) |
| 61 | 45 | adantr | |- ( ( ph /\ y e. ( Base ` D ) ) -> O e. Cat ) |
| 62 | 47 | adantr | |- ( ( ph /\ y e. ( Base ` D ) ) -> P e. Cat ) |
| 63 | eqid | |- ( ( 1st ` ( O DiagFunc P ) ) ` X ) = ( ( 1st ` ( O DiagFunc P ) ) ` X ) |
|
| 64 | 43 61 62 18 57 63 17 59 | diag11 | |- ( ( ph /\ y e. ( Base ` D ) ) -> ( ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) ` y ) = X ) |
| 65 | 60 64 | eqtr4d | |- ( ( ph /\ y e. ( Base ` D ) ) -> ( ( 1st ` ( ( 1st ` L ) ` X ) ) ` y ) = ( ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) ` y ) ) |
| 66 | 42 54 65 | eqfnfvd | |- ( ph -> ( 1st ` ( ( 1st ` L ) ` X ) ) = ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) ) |
| 67 | 15 66 | eqtrd | |- ( ph -> ( 1st ` ( F ` ( ( 1st ` L ) ` X ) ) ) = ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) ) |
| 68 | 17 39 | funcfn2 | |- ( ph -> ( 2nd ` ( F ` ( ( 1st ` L ) ` X ) ) ) Fn ( ( Base ` D ) X. ( Base ` D ) ) ) |
| 69 | 17 52 | funcfn2 | |- ( ph -> ( 2nd ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) Fn ( ( Base ` D ) X. ( Base ` D ) ) ) |
| 70 | 6 14 | opf12 | |- ( ph -> ( y ( 2nd ` ( F ` ( ( 1st ` L ) ` X ) ) ) z ) = ( z ( 2nd ` ( ( 1st ` L ) ` X ) ) y ) ) |
| 71 | 70 | adantr | |- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( y ( 2nd ` ( F ` ( ( 1st ` L ) ` X ) ) ) z ) = ( z ( 2nd ` ( ( 1st ` L ) ` X ) ) y ) ) |
| 72 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 73 | 72 2 | oppchom | |- ( y ( Hom ` P ) z ) = ( z ( Hom ` D ) y ) |
| 74 | 73 | a1i | |- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( y ( Hom ` P ) z ) = ( z ( Hom ` D ) y ) ) |
| 75 | eqid | |- ( Hom ` P ) = ( Hom ` P ) |
|
| 76 | eqid | |- ( Hom ` O ) = ( Hom ` O ) |
|
| 77 | 39 | adantr | |- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( 1st ` ( F ` ( ( 1st ` L ) ` X ) ) ) ( P Func O ) ( 2nd ` ( F ` ( ( 1st ` L ) ` X ) ) ) ) |
| 78 | simprl | |- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> y e. ( Base ` D ) ) |
|
| 79 | simprr | |- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> z e. ( Base ` D ) ) |
|
| 80 | 17 75 76 77 78 79 | funcf2 | |- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( y ( 2nd ` ( F ` ( ( 1st ` L ) ` X ) ) ) z ) : ( y ( Hom ` P ) z ) --> ( ( ( 1st ` ( F ` ( ( 1st ` L ) ` X ) ) ) ` y ) ( Hom ` O ) ( ( 1st ` ( F ` ( ( 1st ` L ) ` X ) ) ) ` z ) ) ) |
| 81 | 74 80 | feq2dd | |- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( y ( 2nd ` ( F ` ( ( 1st ` L ) ` X ) ) ) z ) : ( z ( Hom ` D ) y ) --> ( ( ( 1st ` ( F ` ( ( 1st ` L ) ` X ) ) ) ` y ) ( Hom ` O ) ( ( 1st ` ( F ` ( ( 1st ` L ) ` X ) ) ) ` z ) ) ) |
| 82 | 71 81 | feq1dd | |- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( z ( 2nd ` ( ( 1st ` L ) ` X ) ) y ) : ( z ( Hom ` D ) y ) --> ( ( ( 1st ` ( F ` ( ( 1st ` L ) ` X ) ) ) ` y ) ( Hom ` O ) ( ( 1st ` ( F ` ( ( 1st ` L ) ` X ) ) ) ` z ) ) ) |
| 83 | 82 | ffnd | |- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( z ( 2nd ` ( ( 1st ` L ) ` X ) ) y ) Fn ( z ( Hom ` D ) y ) ) |
| 84 | 52 | adantr | |- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) ( P Func O ) ( 2nd ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) ) |
| 85 | 17 75 76 84 78 79 | funcf2 | |- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( y ( 2nd ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) z ) : ( y ( Hom ` P ) z ) --> ( ( ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) ` y ) ( Hom ` O ) ( ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) ` z ) ) ) |
| 86 | 74 85 | feq2dd | |- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( y ( 2nd ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) z ) : ( z ( Hom ` D ) y ) --> ( ( ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) ` y ) ( Hom ` O ) ( ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) ` z ) ) ) |
| 87 | 86 | ffnd | |- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( y ( 2nd ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) z ) Fn ( z ( Hom ` D ) y ) ) |
| 88 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 89 | 1 88 | oppcid | |- ( C e. Cat -> ( Id ` O ) = ( Id ` C ) ) |
| 90 | 4 89 | syl | |- ( ph -> ( Id ` O ) = ( Id ` C ) ) |
| 91 | 90 | fveq1d | |- ( ph -> ( ( Id ` O ) ` X ) = ( ( Id ` C ) ` X ) ) |
| 92 | 91 | ad2antrr | |- ( ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ f e. ( z ( Hom ` D ) y ) ) -> ( ( Id ` O ) ` X ) = ( ( Id ` C ) ` X ) ) |
| 93 | 4 | ad2antrr | |- ( ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ f e. ( z ( Hom ` D ) y ) ) -> C e. Cat ) |
| 94 | 93 44 | syl | |- ( ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ f e. ( z ( Hom ` D ) y ) ) -> O e. Cat ) |
| 95 | 5 | ad2antrr | |- ( ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ f e. ( z ( Hom ` D ) y ) ) -> D e. Cat ) |
| 96 | 95 46 | syl | |- ( ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ f e. ( z ( Hom ` D ) y ) ) -> P e. Cat ) |
| 97 | 8 | ad2antrr | |- ( ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ f e. ( z ( Hom ` D ) y ) ) -> X e. A ) |
| 98 | 78 | adantr | |- ( ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ f e. ( z ( Hom ` D ) y ) ) -> y e. ( Base ` D ) ) |
| 99 | eqid | |- ( Id ` O ) = ( Id ` O ) |
|
| 100 | 79 | adantr | |- ( ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ f e. ( z ( Hom ` D ) y ) ) -> z e. ( Base ` D ) ) |
| 101 | simpr | |- ( ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ f e. ( z ( Hom ` D ) y ) ) -> f e. ( z ( Hom ` D ) y ) ) |
|
| 102 | 101 73 | eleqtrrdi | |- ( ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ f e. ( z ( Hom ` D ) y ) ) -> f e. ( y ( Hom ` P ) z ) ) |
| 103 | 43 94 96 18 97 63 17 98 75 99 100 102 | diag12 | |- ( ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ f e. ( z ( Hom ` D ) y ) ) -> ( ( y ( 2nd ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) z ) ` f ) = ( ( Id ` O ) ` X ) ) |
| 104 | 3 93 95 7 97 58 16 100 72 88 98 101 | diag12 | |- ( ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ f e. ( z ( Hom ` D ) y ) ) -> ( ( z ( 2nd ` ( ( 1st ` L ) ` X ) ) y ) ` f ) = ( ( Id ` C ) ` X ) ) |
| 105 | 92 103 104 | 3eqtr4rd | |- ( ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ f e. ( z ( Hom ` D ) y ) ) -> ( ( z ( 2nd ` ( ( 1st ` L ) ` X ) ) y ) ` f ) = ( ( y ( 2nd ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) z ) ` f ) ) |
| 106 | 83 87 105 | eqfnfvd | |- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( z ( 2nd ` ( ( 1st ` L ) ` X ) ) y ) = ( y ( 2nd ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) z ) ) |
| 107 | 71 106 | eqtrd | |- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( y ( 2nd ` ( F ` ( ( 1st ` L ) ` X ) ) ) z ) = ( y ( 2nd ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) z ) ) |
| 108 | 68 69 107 | eqfnovd | |- ( ph -> ( 2nd ` ( F ` ( ( 1st ` L ) ` X ) ) ) = ( 2nd ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) ) |
| 109 | 67 108 | opeq12d | |- ( ph -> <. ( 1st ` ( F ` ( ( 1st ` L ) ` X ) ) ) , ( 2nd ` ( F ` ( ( 1st ` L ) ` X ) ) ) >. = <. ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) , ( 2nd ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) >. ) |
| 110 | relfunc | |- Rel ( P Func O ) |
|
| 111 | 1st2nd | |- ( ( Rel ( P Func O ) /\ ( F ` ( ( 1st ` L ) ` X ) ) e. ( P Func O ) ) -> ( F ` ( ( 1st ` L ) ` X ) ) = <. ( 1st ` ( F ` ( ( 1st ` L ) ` X ) ) ) , ( 2nd ` ( F ` ( ( 1st ` L ) ` X ) ) ) >. ) |
|
| 112 | 110 38 111 | sylancr | |- ( ph -> ( F ` ( ( 1st ` L ) ` X ) ) = <. ( 1st ` ( F ` ( ( 1st ` L ) ` X ) ) ) , ( 2nd ` ( F ` ( ( 1st ` L ) ` X ) ) ) >. ) |
| 113 | 1st2nd | |- ( ( Rel ( P Func O ) /\ ( ( 1st ` ( O DiagFunc P ) ) ` X ) e. ( P Func O ) ) -> ( ( 1st ` ( O DiagFunc P ) ) ` X ) = <. ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) , ( 2nd ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) >. ) |
|
| 114 | 110 51 113 | sylancr | |- ( ph -> ( ( 1st ` ( O DiagFunc P ) ) ` X ) = <. ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) , ( 2nd ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) >. ) |
| 115 | 109 112 114 | 3eqtr4d | |- ( ph -> ( F ` ( ( 1st ` L ) ` X ) ) = ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) |