This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A diagonal functor for opposite categories is the opposite functor of the diagonal functor for original categories post-composed by an isomorphism ( fucoppc ). (Contributed by Zhi Wang, 19-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppfdiag.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| oppfdiag.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | ||
| oppfdiag.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | ||
| oppfdiag.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| oppfdiag.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| oppfdiag.f | ⊢ ( 𝜑 → 𝐹 = ( oppFunc ↾ ( 𝐷 Func 𝐶 ) ) ) | ||
| oppfdiag.n | ⊢ 𝑁 = ( 𝐷 Nat 𝐶 ) | ||
| oppfdiag.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑚 ∈ ( 𝐷 Func 𝐶 ) , 𝑛 ∈ ( 𝐷 Func 𝐶 ) ↦ ( I ↾ ( 𝑛 𝑁 𝑚 ) ) ) ) | ||
| Assertion | oppfdiag | ⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) = ( 𝑂 Δfunc 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppfdiag.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | oppfdiag.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | |
| 3 | oppfdiag.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | |
| 4 | oppfdiag.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 5 | oppfdiag.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 6 | oppfdiag.f | ⊢ ( 𝜑 → 𝐹 = ( oppFunc ↾ ( 𝐷 Func 𝐶 ) ) ) | |
| 7 | oppfdiag.n | ⊢ 𝑁 = ( 𝐷 Nat 𝐶 ) | |
| 8 | oppfdiag.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑚 ∈ ( 𝐷 Func 𝐶 ) , 𝑛 ∈ ( 𝐷 Func 𝐶 ) ↦ ( I ↾ ( 𝑛 𝑁 𝑚 ) ) ) ) | |
| 9 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 10 | 1 9 | oppcbas | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) |
| 11 | eqid | ⊢ ( 𝑃 FuncCat 𝑂 ) = ( 𝑃 FuncCat 𝑂 ) | |
| 12 | 11 | fucbas | ⊢ ( 𝑃 Func 𝑂 ) = ( Base ‘ ( 𝑃 FuncCat 𝑂 ) ) |
| 13 | eqid | ⊢ ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) = ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) | |
| 14 | eqid | ⊢ ( 𝐷 FuncCat 𝐶 ) = ( 𝐷 FuncCat 𝐶 ) | |
| 15 | 3 4 5 14 | diagcl | ⊢ ( 𝜑 → 𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ) |
| 16 | 1 13 15 | oppfoppc2 | ⊢ ( 𝜑 → ( oppFunc ‘ 𝐿 ) ∈ ( 𝑂 Func ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) ) |
| 17 | 2 1 14 13 11 7 6 8 5 4 | fucoppcfunc | ⊢ ( 𝜑 → 𝐹 ( ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) Func ( 𝑃 FuncCat 𝑂 ) ) 𝐺 ) |
| 18 | df-br | ⊢ ( 𝐹 ( ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) Func ( 𝑃 FuncCat 𝑂 ) ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) Func ( 𝑃 FuncCat 𝑂 ) ) ) | |
| 19 | 17 18 | sylib | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) Func ( 𝑃 FuncCat 𝑂 ) ) ) |
| 20 | 16 19 | cofucl | ⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ∈ ( 𝑂 Func ( 𝑃 FuncCat 𝑂 ) ) ) |
| 21 | 20 | func1st2nd | ⊢ ( 𝜑 → ( 1st ‘ ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ) ( 𝑂 Func ( 𝑃 FuncCat 𝑂 ) ) ( 2nd ‘ ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ) ) |
| 22 | 10 12 21 | funcf1 | ⊢ ( 𝜑 → ( 1st ‘ ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ) : ( Base ‘ 𝐶 ) ⟶ ( 𝑃 Func 𝑂 ) ) |
| 23 | 22 | ffnd | ⊢ ( 𝜑 → ( 1st ‘ ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ) Fn ( Base ‘ 𝐶 ) ) |
| 24 | eqid | ⊢ ( 𝑂 Δfunc 𝑃 ) = ( 𝑂 Δfunc 𝑃 ) | |
| 25 | 1 | oppccat | ⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ Cat ) |
| 26 | 4 25 | syl | ⊢ ( 𝜑 → 𝑂 ∈ Cat ) |
| 27 | 2 | oppccat | ⊢ ( 𝐷 ∈ Cat → 𝑃 ∈ Cat ) |
| 28 | 5 27 | syl | ⊢ ( 𝜑 → 𝑃 ∈ Cat ) |
| 29 | 24 26 28 11 | diagcl | ⊢ ( 𝜑 → ( 𝑂 Δfunc 𝑃 ) ∈ ( 𝑂 Func ( 𝑃 FuncCat 𝑂 ) ) ) |
| 30 | 29 | func1st2nd | ⊢ ( 𝜑 → ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ( 𝑂 Func ( 𝑃 FuncCat 𝑂 ) ) ( 2nd ‘ ( 𝑂 Δfunc 𝑃 ) ) ) |
| 31 | 10 12 30 | funcf1 | ⊢ ( 𝜑 → ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) : ( Base ‘ 𝐶 ) ⟶ ( 𝑃 Func 𝑂 ) ) |
| 32 | 31 | ffnd | ⊢ ( 𝜑 → ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) Fn ( Base ‘ 𝐶 ) ) |
| 33 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( oppFunc ‘ 𝐿 ) ∈ ( 𝑂 Func ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) ) |
| 34 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 〈 𝐹 , 𝐺 〉 ∈ ( ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) Func ( 𝑃 FuncCat 𝑂 ) ) ) |
| 35 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 36 | 10 33 34 35 | cofu1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ) ‘ 𝑥 ) = ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ ( ( 1st ‘ ( oppFunc ‘ 𝐿 ) ) ‘ 𝑥 ) ) ) |
| 37 | 17 | func1st | ⊢ ( 𝜑 → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) |
| 38 | 15 | oppf1 | ⊢ ( 𝜑 → ( 1st ‘ ( oppFunc ‘ 𝐿 ) ) = ( 1st ‘ 𝐿 ) ) |
| 39 | 38 | fveq1d | ⊢ ( 𝜑 → ( ( 1st ‘ ( oppFunc ‘ 𝐿 ) ) ‘ 𝑥 ) = ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) |
| 40 | 37 39 | fveq12d | ⊢ ( 𝜑 → ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ ( ( 1st ‘ ( oppFunc ‘ 𝐿 ) ) ‘ 𝑥 ) ) = ( 𝐹 ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) |
| 41 | 40 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ ( ( 1st ‘ ( oppFunc ‘ 𝐿 ) ) ‘ 𝑥 ) ) = ( 𝐹 ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) |
| 42 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) |
| 43 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐷 ∈ Cat ) |
| 44 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐹 = ( oppFunc ↾ ( 𝐷 Func 𝐶 ) ) ) |
| 45 | 1 2 3 42 43 44 9 35 | oppfdiag1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝐹 ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) = ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑥 ) ) |
| 46 | 36 41 45 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ) ‘ 𝑥 ) = ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑥 ) ) |
| 47 | 23 32 46 | eqfnfvd | ⊢ ( 𝜑 → ( 1st ‘ ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ) = ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ) |
| 48 | 10 21 | funcfn2 | ⊢ ( 𝜑 → ( 2nd ‘ ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 49 | 10 30 | funcfn2 | ⊢ ( 𝜑 → ( 2nd ‘ ( 𝑂 Δfunc 𝑃 ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 50 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 51 | 50 1 | oppchom | ⊢ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) |
| 52 | 51 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 53 | eqid | ⊢ ( Hom ‘ 𝑂 ) = ( Hom ‘ 𝑂 ) | |
| 54 | eqid | ⊢ ( 𝑃 Nat 𝑂 ) = ( 𝑃 Nat 𝑂 ) | |
| 55 | 11 54 | fuchom | ⊢ ( 𝑃 Nat 𝑂 ) = ( Hom ‘ ( 𝑃 FuncCat 𝑂 ) ) |
| 56 | 21 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st ‘ ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ) ( 𝑂 Func ( 𝑃 FuncCat 𝑂 ) ) ( 2nd ‘ ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ) ) |
| 57 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 58 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 59 | 10 53 55 56 57 58 | funcf2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ⟶ ( ( ( 1st ‘ ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ) ‘ 𝑥 ) ( 𝑃 Nat 𝑂 ) ( ( 1st ‘ ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ) ‘ 𝑦 ) ) ) |
| 60 | 52 59 | feq2dd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ) 𝑦 ) : ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ⟶ ( ( ( 1st ‘ ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ) ‘ 𝑥 ) ( 𝑃 Nat 𝑂 ) ( ( 1st ‘ ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ) ‘ 𝑦 ) ) ) |
| 61 | 60 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ) 𝑦 ) Fn ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 62 | 30 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ( 𝑂 Func ( 𝑃 FuncCat 𝑂 ) ) ( 2nd ‘ ( 𝑂 Δfunc 𝑃 ) ) ) |
| 63 | 10 53 55 62 57 58 | funcf2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ ( 𝑂 Δfunc 𝑃 ) ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ⟶ ( ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑥 ) ( 𝑃 Nat 𝑂 ) ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑦 ) ) ) |
| 64 | 52 63 | feq2dd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ ( 𝑂 Δfunc 𝑃 ) ) 𝑦 ) : ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ⟶ ( ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑥 ) ( 𝑃 Nat 𝑂 ) ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑦 ) ) ) |
| 65 | 64 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ ( 𝑂 Δfunc 𝑃 ) ) 𝑦 ) Fn ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 66 | 16 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( oppFunc ‘ 𝐿 ) ∈ ( 𝑂 Func ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) ) |
| 67 | 19 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 〈 𝐹 , 𝐺 〉 ∈ ( ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) Func ( 𝑃 FuncCat 𝑂 ) ) ) |
| 68 | 57 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 69 | 58 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 70 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) | |
| 71 | 70 51 | eleqtrrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) |
| 72 | 10 66 67 68 69 53 71 | cofu2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ( 𝑥 ( 2nd ‘ ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ) 𝑦 ) ‘ 𝑓 ) = ( ( ( ( 1st ‘ ( oppFunc ‘ 𝐿 ) ) ‘ 𝑥 ) ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) ( ( 1st ‘ ( oppFunc ‘ 𝐿 ) ) ‘ 𝑦 ) ) ‘ ( ( 𝑥 ( 2nd ‘ ( oppFunc ‘ 𝐿 ) ) 𝑦 ) ‘ 𝑓 ) ) ) |
| 73 | 17 | func2nd | ⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐺 ) |
| 74 | 38 | fveq1d | ⊢ ( 𝜑 → ( ( 1st ‘ ( oppFunc ‘ 𝐿 ) ) ‘ 𝑦 ) = ( ( 1st ‘ 𝐿 ) ‘ 𝑦 ) ) |
| 75 | 73 39 74 | oveq123d | ⊢ ( 𝜑 → ( ( ( 1st ‘ ( oppFunc ‘ 𝐿 ) ) ‘ 𝑥 ) ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) ( ( 1st ‘ ( oppFunc ‘ 𝐿 ) ) ‘ 𝑦 ) ) = ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝐺 ( ( 1st ‘ 𝐿 ) ‘ 𝑦 ) ) ) |
| 76 | 15 | oppf2 | ⊢ ( 𝜑 → ( 𝑥 ( 2nd ‘ ( oppFunc ‘ 𝐿 ) ) 𝑦 ) = ( 𝑦 ( 2nd ‘ 𝐿 ) 𝑥 ) ) |
| 77 | 76 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑥 ( 2nd ‘ ( oppFunc ‘ 𝐿 ) ) 𝑦 ) ‘ 𝑓 ) = ( ( 𝑦 ( 2nd ‘ 𝐿 ) 𝑥 ) ‘ 𝑓 ) ) |
| 78 | 75 77 | fveq12d | ⊢ ( 𝜑 → ( ( ( ( 1st ‘ ( oppFunc ‘ 𝐿 ) ) ‘ 𝑥 ) ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) ( ( 1st ‘ ( oppFunc ‘ 𝐿 ) ) ‘ 𝑦 ) ) ‘ ( ( 𝑥 ( 2nd ‘ ( oppFunc ‘ 𝐿 ) ) 𝑦 ) ‘ 𝑓 ) ) = ( ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝐺 ( ( 1st ‘ 𝐿 ) ‘ 𝑦 ) ) ‘ ( ( 𝑦 ( 2nd ‘ 𝐿 ) 𝑥 ) ‘ 𝑓 ) ) ) |
| 79 | 78 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ( ( ( 1st ‘ ( oppFunc ‘ 𝐿 ) ) ‘ 𝑥 ) ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) ( ( 1st ‘ ( oppFunc ‘ 𝐿 ) ) ‘ 𝑦 ) ) ‘ ( ( 𝑥 ( 2nd ‘ ( oppFunc ‘ 𝐿 ) ) 𝑦 ) ‘ 𝑓 ) ) = ( ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝐺 ( ( 1st ‘ 𝐿 ) ‘ 𝑦 ) ) ‘ ( ( 𝑦 ( 2nd ‘ 𝐿 ) 𝑥 ) ‘ 𝑓 ) ) ) |
| 80 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝐺 = ( 𝑚 ∈ ( 𝐷 Func 𝐶 ) , 𝑛 ∈ ( 𝐷 Func 𝐶 ) ↦ ( I ↾ ( 𝑛 𝑁 𝑚 ) ) ) ) |
| 81 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝐶 ∈ Cat ) |
| 82 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝐷 ∈ Cat ) |
| 83 | eqid | ⊢ ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) = ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) | |
| 84 | 3 81 82 9 68 83 | diag1cl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ∈ ( 𝐷 Func 𝐶 ) ) |
| 85 | eqid | ⊢ ( ( 1st ‘ 𝐿 ) ‘ 𝑦 ) = ( ( 1st ‘ 𝐿 ) ‘ 𝑦 ) | |
| 86 | 3 81 82 9 69 85 | diag1cl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ( 1st ‘ 𝐿 ) ‘ 𝑦 ) ∈ ( 𝐷 Func 𝐶 ) ) |
| 87 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 88 | 3 9 87 50 81 82 69 68 70 | diag2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ( 𝑦 ( 2nd ‘ 𝐿 ) 𝑥 ) ‘ 𝑓 ) = ( ( Base ‘ 𝐷 ) × { 𝑓 } ) ) |
| 89 | 3 9 87 50 81 82 69 68 70 7 | diag2cl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ( Base ‘ 𝐷 ) × { 𝑓 } ) ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑦 ) 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) |
| 90 | 80 84 86 88 89 | opf2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) 𝐺 ( ( 1st ‘ 𝐿 ) ‘ 𝑦 ) ) ‘ ( ( 𝑦 ( 2nd ‘ 𝐿 ) 𝑥 ) ‘ 𝑓 ) ) = ( ( Base ‘ 𝐷 ) × { 𝑓 } ) ) |
| 91 | 72 79 90 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ( 𝑥 ( 2nd ‘ ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ) 𝑦 ) ‘ 𝑓 ) = ( ( Base ‘ 𝐷 ) × { 𝑓 } ) ) |
| 92 | 2 87 | oppcbas | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝑃 ) |
| 93 | 81 25 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝑂 ∈ Cat ) |
| 94 | 82 27 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝑃 ∈ Cat ) |
| 95 | 24 10 92 53 93 94 68 69 71 | diag2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ( 𝑥 ( 2nd ‘ ( 𝑂 Δfunc 𝑃 ) ) 𝑦 ) ‘ 𝑓 ) = ( ( Base ‘ 𝐷 ) × { 𝑓 } ) ) |
| 96 | 91 95 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ( 𝑥 ( 2nd ‘ ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ) 𝑦 ) ‘ 𝑓 ) = ( ( 𝑥 ( 2nd ‘ ( 𝑂 Δfunc 𝑃 ) ) 𝑦 ) ‘ 𝑓 ) ) |
| 97 | 61 65 96 | eqfnfvd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ) 𝑦 ) = ( 𝑥 ( 2nd ‘ ( 𝑂 Δfunc 𝑃 ) ) 𝑦 ) ) |
| 98 | 48 49 97 | eqfnovd | ⊢ ( 𝜑 → ( 2nd ‘ ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ) = ( 2nd ‘ ( 𝑂 Δfunc 𝑃 ) ) ) |
| 99 | 47 98 | opeq12d | ⊢ ( 𝜑 → 〈 ( 1st ‘ ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ) , ( 2nd ‘ ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ) 〉 = 〈 ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) , ( 2nd ‘ ( 𝑂 Δfunc 𝑃 ) ) 〉 ) |
| 100 | relfunc | ⊢ Rel ( 𝑂 Func ( 𝑃 FuncCat 𝑂 ) ) | |
| 101 | 1st2nd | ⊢ ( ( Rel ( 𝑂 Func ( 𝑃 FuncCat 𝑂 ) ) ∧ ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ∈ ( 𝑂 Func ( 𝑃 FuncCat 𝑂 ) ) ) → ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) = 〈 ( 1st ‘ ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ) , ( 2nd ‘ ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ) 〉 ) | |
| 102 | 100 20 101 | sylancr | ⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) = 〈 ( 1st ‘ ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ) , ( 2nd ‘ ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) ) 〉 ) |
| 103 | 1st2nd | ⊢ ( ( Rel ( 𝑂 Func ( 𝑃 FuncCat 𝑂 ) ) ∧ ( 𝑂 Δfunc 𝑃 ) ∈ ( 𝑂 Func ( 𝑃 FuncCat 𝑂 ) ) ) → ( 𝑂 Δfunc 𝑃 ) = 〈 ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) , ( 2nd ‘ ( 𝑂 Δfunc 𝑃 ) ) 〉 ) | |
| 104 | 100 29 103 | sylancr | ⊢ ( 𝜑 → ( 𝑂 Δfunc 𝑃 ) = 〈 ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) , ( 2nd ‘ ( 𝑂 Δfunc 𝑃 ) ) 〉 ) |
| 105 | 99 102 104 | 3eqtr4d | ⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ∘func ( oppFunc ‘ 𝐿 ) ) = ( 𝑂 Δfunc 𝑃 ) ) |