This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The morphism part of the op functor on functor categories. Lemma for fucoppc . (Contributed by Zhi Wang, 18-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opf2fval.f | |- ( ph -> F = ( x e. A , y e. B |-> ( _I |` ( y N x ) ) ) ) |
|
| opf2fval.x | |- ( ph -> X e. A ) |
||
| opf2fval.y | |- ( ph -> Y e. B ) |
||
| opf2.c | |- ( ph -> C = D ) |
||
| opf2.d | |- ( ph -> D e. ( Y N X ) ) |
||
| Assertion | opf2 | |- ( ph -> ( ( X F Y ) ` C ) = D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opf2fval.f | |- ( ph -> F = ( x e. A , y e. B |-> ( _I |` ( y N x ) ) ) ) |
|
| 2 | opf2fval.x | |- ( ph -> X e. A ) |
|
| 3 | opf2fval.y | |- ( ph -> Y e. B ) |
|
| 4 | opf2.c | |- ( ph -> C = D ) |
|
| 5 | opf2.d | |- ( ph -> D e. ( Y N X ) ) |
|
| 6 | 1 2 3 | opf2fval | |- ( ph -> ( X F Y ) = ( _I |` ( Y N X ) ) ) |
| 7 | 6 4 | fveq12d | |- ( ph -> ( ( X F Y ) ` C ) = ( ( _I |` ( Y N X ) ) ` D ) ) |
| 8 | fvresi | |- ( D e. ( Y N X ) -> ( ( _I |` ( Y N X ) ) ` D ) = D ) |
|
| 9 | 5 8 | syl | |- ( ph -> ( ( _I |` ( Y N X ) ) ` D ) = D ) |
| 10 | 7 9 | eqtrd | |- ( ph -> ( ( X F Y ) ` C ) = D ) |