This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Base set of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017) (Proof shortened by AV, 18-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcbas.1 | |- O = ( oppCat ` C ) |
|
| oppcbas.2 | |- B = ( Base ` C ) |
||
| Assertion | oppcbas | |- B = ( Base ` O ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcbas.1 | |- O = ( oppCat ` C ) |
|
| 2 | oppcbas.2 | |- B = ( Base ` C ) |
|
| 3 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 4 | slotsbhcdif | |- ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) |
|
| 5 | 4 | simp1i | |- ( Base ` ndx ) =/= ( Hom ` ndx ) |
| 6 | 3 5 | setsnid | |- ( Base ` C ) = ( Base ` ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) ) |
| 7 | 4 | simp2i | |- ( Base ` ndx ) =/= ( comp ` ndx ) |
| 8 | 3 7 | setsnid | |- ( Base ` ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) ) = ( Base ` ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) |
| 9 | 6 8 | eqtri | |- ( Base ` C ) = ( Base ` ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) |
| 10 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 11 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 12 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 13 | 10 11 12 1 | oppcval | |- ( C e. _V -> O = ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) |
| 14 | 13 | fveq2d | |- ( C e. _V -> ( Base ` O ) = ( Base ` ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) ) |
| 15 | 9 14 | eqtr4id | |- ( C e. _V -> ( Base ` C ) = ( Base ` O ) ) |
| 16 | base0 | |- (/) = ( Base ` (/) ) |
|
| 17 | 16 | eqcomi | |- ( Base ` (/) ) = (/) |
| 18 | 17 1 | fveqprc | |- ( -. C e. _V -> ( Base ` C ) = ( Base ` O ) ) |
| 19 | 15 18 | pm2.61i | |- ( Base ` C ) = ( Base ` O ) |
| 20 | 2 19 | eqtri | |- B = ( Base ` O ) |