This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the diagonal functor at a morphism. (Contributed by Mario Carneiro, 7-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diag2.l | |- L = ( C DiagFunc D ) |
|
| diag2.a | |- A = ( Base ` C ) |
||
| diag2.b | |- B = ( Base ` D ) |
||
| diag2.h | |- H = ( Hom ` C ) |
||
| diag2.c | |- ( ph -> C e. Cat ) |
||
| diag2.d | |- ( ph -> D e. Cat ) |
||
| diag2.x | |- ( ph -> X e. A ) |
||
| diag2.y | |- ( ph -> Y e. A ) |
||
| diag2.f | |- ( ph -> F e. ( X H Y ) ) |
||
| Assertion | diag2 | |- ( ph -> ( ( X ( 2nd ` L ) Y ) ` F ) = ( B X. { F } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag2.l | |- L = ( C DiagFunc D ) |
|
| 2 | diag2.a | |- A = ( Base ` C ) |
|
| 3 | diag2.b | |- B = ( Base ` D ) |
|
| 4 | diag2.h | |- H = ( Hom ` C ) |
|
| 5 | diag2.c | |- ( ph -> C e. Cat ) |
|
| 6 | diag2.d | |- ( ph -> D e. Cat ) |
|
| 7 | diag2.x | |- ( ph -> X e. A ) |
|
| 8 | diag2.y | |- ( ph -> Y e. A ) |
|
| 9 | diag2.f | |- ( ph -> F e. ( X H Y ) ) |
|
| 10 | 1 5 6 | diagval | |- ( ph -> L = ( <. C , D >. curryF ( C 1stF D ) ) ) |
| 11 | 10 | fveq2d | |- ( ph -> ( 2nd ` L ) = ( 2nd ` ( <. C , D >. curryF ( C 1stF D ) ) ) ) |
| 12 | 11 | oveqd | |- ( ph -> ( X ( 2nd ` L ) Y ) = ( X ( 2nd ` ( <. C , D >. curryF ( C 1stF D ) ) ) Y ) ) |
| 13 | 12 | fveq1d | |- ( ph -> ( ( X ( 2nd ` L ) Y ) ` F ) = ( ( X ( 2nd ` ( <. C , D >. curryF ( C 1stF D ) ) ) Y ) ` F ) ) |
| 14 | eqid | |- ( <. C , D >. curryF ( C 1stF D ) ) = ( <. C , D >. curryF ( C 1stF D ) ) |
|
| 15 | eqid | |- ( C Xc. D ) = ( C Xc. D ) |
|
| 16 | eqid | |- ( C 1stF D ) = ( C 1stF D ) |
|
| 17 | 15 5 6 16 | 1stfcl | |- ( ph -> ( C 1stF D ) e. ( ( C Xc. D ) Func C ) ) |
| 18 | eqid | |- ( Id ` D ) = ( Id ` D ) |
|
| 19 | eqid | |- ( ( X ( 2nd ` ( <. C , D >. curryF ( C 1stF D ) ) ) Y ) ` F ) = ( ( X ( 2nd ` ( <. C , D >. curryF ( C 1stF D ) ) ) Y ) ` F ) |
|
| 20 | 14 2 5 6 17 3 4 18 7 8 9 19 | curf2 | |- ( ph -> ( ( X ( 2nd ` ( <. C , D >. curryF ( C 1stF D ) ) ) Y ) ` F ) = ( x e. B |-> ( F ( <. X , x >. ( 2nd ` ( C 1stF D ) ) <. Y , x >. ) ( ( Id ` D ) ` x ) ) ) ) |
| 21 | 15 2 3 | xpcbas | |- ( A X. B ) = ( Base ` ( C Xc. D ) ) |
| 22 | eqid | |- ( Hom ` ( C Xc. D ) ) = ( Hom ` ( C Xc. D ) ) |
|
| 23 | 5 | adantr | |- ( ( ph /\ x e. B ) -> C e. Cat ) |
| 24 | 6 | adantr | |- ( ( ph /\ x e. B ) -> D e. Cat ) |
| 25 | opelxpi | |- ( ( X e. A /\ x e. B ) -> <. X , x >. e. ( A X. B ) ) |
|
| 26 | 7 25 | sylan | |- ( ( ph /\ x e. B ) -> <. X , x >. e. ( A X. B ) ) |
| 27 | opelxpi | |- ( ( Y e. A /\ x e. B ) -> <. Y , x >. e. ( A X. B ) ) |
|
| 28 | 8 27 | sylan | |- ( ( ph /\ x e. B ) -> <. Y , x >. e. ( A X. B ) ) |
| 29 | 15 21 22 23 24 16 26 28 | 1stf2 | |- ( ( ph /\ x e. B ) -> ( <. X , x >. ( 2nd ` ( C 1stF D ) ) <. Y , x >. ) = ( 1st |` ( <. X , x >. ( Hom ` ( C Xc. D ) ) <. Y , x >. ) ) ) |
| 30 | 29 | oveqd | |- ( ( ph /\ x e. B ) -> ( F ( <. X , x >. ( 2nd ` ( C 1stF D ) ) <. Y , x >. ) ( ( Id ` D ) ` x ) ) = ( F ( 1st |` ( <. X , x >. ( Hom ` ( C Xc. D ) ) <. Y , x >. ) ) ( ( Id ` D ) ` x ) ) ) |
| 31 | df-ov | |- ( F ( 1st |` ( <. X , x >. ( Hom ` ( C Xc. D ) ) <. Y , x >. ) ) ( ( Id ` D ) ` x ) ) = ( ( 1st |` ( <. X , x >. ( Hom ` ( C Xc. D ) ) <. Y , x >. ) ) ` <. F , ( ( Id ` D ) ` x ) >. ) |
|
| 32 | 9 | adantr | |- ( ( ph /\ x e. B ) -> F e. ( X H Y ) ) |
| 33 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 34 | simpr | |- ( ( ph /\ x e. B ) -> x e. B ) |
|
| 35 | 3 33 18 24 34 | catidcl | |- ( ( ph /\ x e. B ) -> ( ( Id ` D ) ` x ) e. ( x ( Hom ` D ) x ) ) |
| 36 | 32 35 | opelxpd | |- ( ( ph /\ x e. B ) -> <. F , ( ( Id ` D ) ` x ) >. e. ( ( X H Y ) X. ( x ( Hom ` D ) x ) ) ) |
| 37 | 7 | adantr | |- ( ( ph /\ x e. B ) -> X e. A ) |
| 38 | 8 | adantr | |- ( ( ph /\ x e. B ) -> Y e. A ) |
| 39 | 15 2 3 4 33 37 34 38 34 22 | xpchom2 | |- ( ( ph /\ x e. B ) -> ( <. X , x >. ( Hom ` ( C Xc. D ) ) <. Y , x >. ) = ( ( X H Y ) X. ( x ( Hom ` D ) x ) ) ) |
| 40 | 36 39 | eleqtrrd | |- ( ( ph /\ x e. B ) -> <. F , ( ( Id ` D ) ` x ) >. e. ( <. X , x >. ( Hom ` ( C Xc. D ) ) <. Y , x >. ) ) |
| 41 | 40 | fvresd | |- ( ( ph /\ x e. B ) -> ( ( 1st |` ( <. X , x >. ( Hom ` ( C Xc. D ) ) <. Y , x >. ) ) ` <. F , ( ( Id ` D ) ` x ) >. ) = ( 1st ` <. F , ( ( Id ` D ) ` x ) >. ) ) |
| 42 | 31 41 | eqtrid | |- ( ( ph /\ x e. B ) -> ( F ( 1st |` ( <. X , x >. ( Hom ` ( C Xc. D ) ) <. Y , x >. ) ) ( ( Id ` D ) ` x ) ) = ( 1st ` <. F , ( ( Id ` D ) ` x ) >. ) ) |
| 43 | op1stg | |- ( ( F e. ( X H Y ) /\ ( ( Id ` D ) ` x ) e. ( x ( Hom ` D ) x ) ) -> ( 1st ` <. F , ( ( Id ` D ) ` x ) >. ) = F ) |
|
| 44 | 9 35 43 | syl2an2r | |- ( ( ph /\ x e. B ) -> ( 1st ` <. F , ( ( Id ` D ) ` x ) >. ) = F ) |
| 45 | 30 42 44 | 3eqtrd | |- ( ( ph /\ x e. B ) -> ( F ( <. X , x >. ( 2nd ` ( C 1stF D ) ) <. Y , x >. ) ( ( Id ` D ) ` x ) ) = F ) |
| 46 | 45 | mpteq2dva | |- ( ph -> ( x e. B |-> ( F ( <. X , x >. ( 2nd ` ( C 1stF D ) ) <. Y , x >. ) ( ( Id ` D ) ` x ) ) ) = ( x e. B |-> F ) ) |
| 47 | fconstmpt | |- ( B X. { F } ) = ( x e. B |-> F ) |
|
| 48 | 46 47 | eqtr4di | |- ( ph -> ( x e. B |-> ( F ( <. X , x >. ( 2nd ` ( C 1stF D ) ) <. Y , x >. ) ( ( Id ` D ) ` x ) ) ) = ( B X. { F } ) ) |
| 49 | 13 20 48 | 3eqtrd | |- ( ph -> ( ( X ( 2nd ` L ) Y ) ` F ) = ( B X. { F } ) ) |