This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The diagonal functor at a morphism is a natural transformation between constant functors. (Contributed by Mario Carneiro, 7-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diag2.l | |- L = ( C DiagFunc D ) |
|
| diag2.a | |- A = ( Base ` C ) |
||
| diag2.b | |- B = ( Base ` D ) |
||
| diag2.h | |- H = ( Hom ` C ) |
||
| diag2.c | |- ( ph -> C e. Cat ) |
||
| diag2.d | |- ( ph -> D e. Cat ) |
||
| diag2.x | |- ( ph -> X e. A ) |
||
| diag2.y | |- ( ph -> Y e. A ) |
||
| diag2.f | |- ( ph -> F e. ( X H Y ) ) |
||
| diag2cl.h | |- N = ( D Nat C ) |
||
| Assertion | diag2cl | |- ( ph -> ( B X. { F } ) e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag2.l | |- L = ( C DiagFunc D ) |
|
| 2 | diag2.a | |- A = ( Base ` C ) |
|
| 3 | diag2.b | |- B = ( Base ` D ) |
|
| 4 | diag2.h | |- H = ( Hom ` C ) |
|
| 5 | diag2.c | |- ( ph -> C e. Cat ) |
|
| 6 | diag2.d | |- ( ph -> D e. Cat ) |
|
| 7 | diag2.x | |- ( ph -> X e. A ) |
|
| 8 | diag2.y | |- ( ph -> Y e. A ) |
|
| 9 | diag2.f | |- ( ph -> F e. ( X H Y ) ) |
|
| 10 | diag2cl.h | |- N = ( D Nat C ) |
|
| 11 | 1 2 3 4 5 6 7 8 9 | diag2 | |- ( ph -> ( ( X ( 2nd ` L ) Y ) ` F ) = ( B X. { F } ) ) |
| 12 | eqid | |- ( D FuncCat C ) = ( D FuncCat C ) |
|
| 13 | 12 10 | fuchom | |- N = ( Hom ` ( D FuncCat C ) ) |
| 14 | relfunc | |- Rel ( C Func ( D FuncCat C ) ) |
|
| 15 | 1 5 6 12 | diagcl | |- ( ph -> L e. ( C Func ( D FuncCat C ) ) ) |
| 16 | 1st2ndbr | |- ( ( Rel ( C Func ( D FuncCat C ) ) /\ L e. ( C Func ( D FuncCat C ) ) ) -> ( 1st ` L ) ( C Func ( D FuncCat C ) ) ( 2nd ` L ) ) |
|
| 17 | 14 15 16 | sylancr | |- ( ph -> ( 1st ` L ) ( C Func ( D FuncCat C ) ) ( 2nd ` L ) ) |
| 18 | 2 4 13 17 7 8 | funcf2 | |- ( ph -> ( X ( 2nd ` L ) Y ) : ( X H Y ) --> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) |
| 19 | 18 9 | ffvelcdmd | |- ( ph -> ( ( X ( 2nd ` L ) Y ) ` F ) e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) |
| 20 | 11 19 | eqeltrrd | |- ( ph -> ( B X. { F } ) e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) |