This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite functor is a functor on opposite categories. (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppfoppc.o | |- O = ( oppCat ` C ) |
|
| oppfoppc.p | |- P = ( oppCat ` D ) |
||
| oppfoppc2.f | |- ( ph -> F e. ( C Func D ) ) |
||
| Assertion | oppfoppc2 | |- ( ph -> ( oppFunc ` F ) e. ( O Func P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppfoppc.o | |- O = ( oppCat ` C ) |
|
| 2 | oppfoppc.p | |- P = ( oppCat ` D ) |
|
| 3 | oppfoppc2.f | |- ( ph -> F e. ( C Func D ) ) |
|
| 4 | relfunc | |- Rel ( C Func D ) |
|
| 5 | 1st2nd | |- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
|
| 6 | 4 3 5 | sylancr | |- ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 7 | 6 | fveq2d | |- ( ph -> ( oppFunc ` F ) = ( oppFunc ` <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) |
| 8 | df-ov | |- ( ( 1st ` F ) oppFunc ( 2nd ` F ) ) = ( oppFunc ` <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
|
| 9 | 7 8 | eqtr4di | |- ( ph -> ( oppFunc ` F ) = ( ( 1st ` F ) oppFunc ( 2nd ` F ) ) ) |
| 10 | 3 | func1st2nd | |- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 11 | 1 2 10 | oppfoppc | |- ( ph -> ( ( 1st ` F ) oppFunc ( 2nd ` F ) ) e. ( O Func P ) ) |
| 12 | 9 11 | eqeltrd | |- ( ph -> ( oppFunc ` F ) e. ( O Func P ) ) |