This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: All open sets are measurable. This alternative proof of opnmbl is significantly shorter, at the expense of invoking countable choice ax-cc . (This was also the original proof before the current opnmbl was discovered.) (Contributed by Mario Carneiro, 17-Jun-2014) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opnmblALT | |- ( A e. ( topGen ` ran (,) ) -> A e. dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopbas | |- ( (,) " ( QQ X. QQ ) ) e. TopBases |
|
| 2 | eltg3 | |- ( ( (,) " ( QQ X. QQ ) ) e. TopBases -> ( A e. ( topGen ` ( (,) " ( QQ X. QQ ) ) ) <-> E. x ( x C_ ( (,) " ( QQ X. QQ ) ) /\ A = U. x ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( A e. ( topGen ` ( (,) " ( QQ X. QQ ) ) ) <-> E. x ( x C_ ( (,) " ( QQ X. QQ ) ) /\ A = U. x ) ) |
| 4 | uniiun | |- U. x = U_ y e. x y |
|
| 5 | ssdomg | |- ( ( (,) " ( QQ X. QQ ) ) e. TopBases -> ( x C_ ( (,) " ( QQ X. QQ ) ) -> x ~<_ ( (,) " ( QQ X. QQ ) ) ) ) |
|
| 6 | 1 5 | ax-mp | |- ( x C_ ( (,) " ( QQ X. QQ ) ) -> x ~<_ ( (,) " ( QQ X. QQ ) ) ) |
| 7 | omelon | |- _om e. On |
|
| 8 | qnnen | |- QQ ~~ NN |
|
| 9 | xpen | |- ( ( QQ ~~ NN /\ QQ ~~ NN ) -> ( QQ X. QQ ) ~~ ( NN X. NN ) ) |
|
| 10 | 8 8 9 | mp2an | |- ( QQ X. QQ ) ~~ ( NN X. NN ) |
| 11 | xpnnen | |- ( NN X. NN ) ~~ NN |
|
| 12 | 10 11 | entri | |- ( QQ X. QQ ) ~~ NN |
| 13 | nnenom | |- NN ~~ _om |
|
| 14 | 12 13 | entr2i | |- _om ~~ ( QQ X. QQ ) |
| 15 | isnumi | |- ( ( _om e. On /\ _om ~~ ( QQ X. QQ ) ) -> ( QQ X. QQ ) e. dom card ) |
|
| 16 | 7 14 15 | mp2an | |- ( QQ X. QQ ) e. dom card |
| 17 | ioof | |- (,) : ( RR* X. RR* ) --> ~P RR |
|
| 18 | ffun | |- ( (,) : ( RR* X. RR* ) --> ~P RR -> Fun (,) ) |
|
| 19 | 17 18 | ax-mp | |- Fun (,) |
| 20 | qssre | |- QQ C_ RR |
|
| 21 | ressxr | |- RR C_ RR* |
|
| 22 | 20 21 | sstri | |- QQ C_ RR* |
| 23 | xpss12 | |- ( ( QQ C_ RR* /\ QQ C_ RR* ) -> ( QQ X. QQ ) C_ ( RR* X. RR* ) ) |
|
| 24 | 22 22 23 | mp2an | |- ( QQ X. QQ ) C_ ( RR* X. RR* ) |
| 25 | 17 | fdmi | |- dom (,) = ( RR* X. RR* ) |
| 26 | 24 25 | sseqtrri | |- ( QQ X. QQ ) C_ dom (,) |
| 27 | fores | |- ( ( Fun (,) /\ ( QQ X. QQ ) C_ dom (,) ) -> ( (,) |` ( QQ X. QQ ) ) : ( QQ X. QQ ) -onto-> ( (,) " ( QQ X. QQ ) ) ) |
|
| 28 | 19 26 27 | mp2an | |- ( (,) |` ( QQ X. QQ ) ) : ( QQ X. QQ ) -onto-> ( (,) " ( QQ X. QQ ) ) |
| 29 | fodomnum | |- ( ( QQ X. QQ ) e. dom card -> ( ( (,) |` ( QQ X. QQ ) ) : ( QQ X. QQ ) -onto-> ( (,) " ( QQ X. QQ ) ) -> ( (,) " ( QQ X. QQ ) ) ~<_ ( QQ X. QQ ) ) ) |
|
| 30 | 16 28 29 | mp2 | |- ( (,) " ( QQ X. QQ ) ) ~<_ ( QQ X. QQ ) |
| 31 | domentr | |- ( ( ( (,) " ( QQ X. QQ ) ) ~<_ ( QQ X. QQ ) /\ ( QQ X. QQ ) ~~ NN ) -> ( (,) " ( QQ X. QQ ) ) ~<_ NN ) |
|
| 32 | 30 12 31 | mp2an | |- ( (,) " ( QQ X. QQ ) ) ~<_ NN |
| 33 | domtr | |- ( ( x ~<_ ( (,) " ( QQ X. QQ ) ) /\ ( (,) " ( QQ X. QQ ) ) ~<_ NN ) -> x ~<_ NN ) |
|
| 34 | 6 32 33 | sylancl | |- ( x C_ ( (,) " ( QQ X. QQ ) ) -> x ~<_ NN ) |
| 35 | imassrn | |- ( (,) " ( QQ X. QQ ) ) C_ ran (,) |
|
| 36 | ffn | |- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
|
| 37 | 17 36 | ax-mp | |- (,) Fn ( RR* X. RR* ) |
| 38 | ioombl | |- ( x (,) y ) e. dom vol |
|
| 39 | 38 | rgen2w | |- A. x e. RR* A. y e. RR* ( x (,) y ) e. dom vol |
| 40 | ffnov | |- ( (,) : ( RR* X. RR* ) --> dom vol <-> ( (,) Fn ( RR* X. RR* ) /\ A. x e. RR* A. y e. RR* ( x (,) y ) e. dom vol ) ) |
|
| 41 | 37 39 40 | mpbir2an | |- (,) : ( RR* X. RR* ) --> dom vol |
| 42 | frn | |- ( (,) : ( RR* X. RR* ) --> dom vol -> ran (,) C_ dom vol ) |
|
| 43 | 41 42 | ax-mp | |- ran (,) C_ dom vol |
| 44 | 35 43 | sstri | |- ( (,) " ( QQ X. QQ ) ) C_ dom vol |
| 45 | sstr | |- ( ( x C_ ( (,) " ( QQ X. QQ ) ) /\ ( (,) " ( QQ X. QQ ) ) C_ dom vol ) -> x C_ dom vol ) |
|
| 46 | 44 45 | mpan2 | |- ( x C_ ( (,) " ( QQ X. QQ ) ) -> x C_ dom vol ) |
| 47 | dfss3 | |- ( x C_ dom vol <-> A. y e. x y e. dom vol ) |
|
| 48 | 46 47 | sylib | |- ( x C_ ( (,) " ( QQ X. QQ ) ) -> A. y e. x y e. dom vol ) |
| 49 | iunmbl2 | |- ( ( x ~<_ NN /\ A. y e. x y e. dom vol ) -> U_ y e. x y e. dom vol ) |
|
| 50 | 34 48 49 | syl2anc | |- ( x C_ ( (,) " ( QQ X. QQ ) ) -> U_ y e. x y e. dom vol ) |
| 51 | 4 50 | eqeltrid | |- ( x C_ ( (,) " ( QQ X. QQ ) ) -> U. x e. dom vol ) |
| 52 | eleq1 | |- ( A = U. x -> ( A e. dom vol <-> U. x e. dom vol ) ) |
|
| 53 | 51 52 | syl5ibrcom | |- ( x C_ ( (,) " ( QQ X. QQ ) ) -> ( A = U. x -> A e. dom vol ) ) |
| 54 | 53 | imp | |- ( ( x C_ ( (,) " ( QQ X. QQ ) ) /\ A = U. x ) -> A e. dom vol ) |
| 55 | 54 | exlimiv | |- ( E. x ( x C_ ( (,) " ( QQ X. QQ ) ) /\ A = U. x ) -> A e. dom vol ) |
| 56 | 3 55 | sylbi | |- ( A e. ( topGen ` ( (,) " ( QQ X. QQ ) ) ) -> A e. dom vol ) |
| 57 | eqid | |- ( topGen ` ( (,) " ( QQ X. QQ ) ) ) = ( topGen ` ( (,) " ( QQ X. QQ ) ) ) |
|
| 58 | 57 | tgqioo | |- ( topGen ` ran (,) ) = ( topGen ` ( (,) " ( QQ X. QQ ) ) ) |
| 59 | 56 58 | eleq2s | |- ( A e. ( topGen ` ran (,) ) -> A e. dom vol ) |