This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006) (Proof shortened by Mario Carneiro, 30-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eltg3 | |- ( B e. V -> ( A e. ( topGen ` B ) <-> E. x ( x C_ B /\ A = U. x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm | |- ( A e. ( topGen ` B ) -> B e. dom topGen ) |
|
| 2 | inex1g | |- ( B e. dom topGen -> ( B i^i ~P A ) e. _V ) |
|
| 3 | 1 2 | syl | |- ( A e. ( topGen ` B ) -> ( B i^i ~P A ) e. _V ) |
| 4 | eltg4i | |- ( A e. ( topGen ` B ) -> A = U. ( B i^i ~P A ) ) |
|
| 5 | inss1 | |- ( B i^i ~P A ) C_ B |
|
| 6 | sseq1 | |- ( x = ( B i^i ~P A ) -> ( x C_ B <-> ( B i^i ~P A ) C_ B ) ) |
|
| 7 | 5 6 | mpbiri | |- ( x = ( B i^i ~P A ) -> x C_ B ) |
| 8 | 7 | biantrurd | |- ( x = ( B i^i ~P A ) -> ( A = U. x <-> ( x C_ B /\ A = U. x ) ) ) |
| 9 | unieq | |- ( x = ( B i^i ~P A ) -> U. x = U. ( B i^i ~P A ) ) |
|
| 10 | 9 | eqeq2d | |- ( x = ( B i^i ~P A ) -> ( A = U. x <-> A = U. ( B i^i ~P A ) ) ) |
| 11 | 8 10 | bitr3d | |- ( x = ( B i^i ~P A ) -> ( ( x C_ B /\ A = U. x ) <-> A = U. ( B i^i ~P A ) ) ) |
| 12 | 3 4 11 | spcedv | |- ( A e. ( topGen ` B ) -> E. x ( x C_ B /\ A = U. x ) ) |
| 13 | eltg3i | |- ( ( B e. V /\ x C_ B ) -> U. x e. ( topGen ` B ) ) |
|
| 14 | eleq1 | |- ( A = U. x -> ( A e. ( topGen ` B ) <-> U. x e. ( topGen ` B ) ) ) |
|
| 15 | 13 14 | syl5ibrcom | |- ( ( B e. V /\ x C_ B ) -> ( A = U. x -> A e. ( topGen ` B ) ) ) |
| 16 | 15 | expimpd | |- ( B e. V -> ( ( x C_ B /\ A = U. x ) -> A e. ( topGen ` B ) ) ) |
| 17 | 16 | exlimdv | |- ( B e. V -> ( E. x ( x C_ B /\ A = U. x ) -> A e. ( topGen ` B ) ) ) |
| 18 | 12 17 | impbid2 | |- ( B e. V -> ( A e. ( topGen ` B ) <-> E. x ( x C_ B /\ A = U. x ) ) ) |