This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: All open sets are measurable. This proof, via dyadmbl and uniioombl , shows that it is possible to avoid choice for measurability of open sets and hence continuous functions, which extends the choice-free consequences of Lebesgue measure considerably farther than would otherwise be possible. (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opnmbl | |- ( A e. ( topGen ` ran (,) ) -> A e. dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( x = z -> ( x / ( 2 ^ y ) ) = ( z / ( 2 ^ y ) ) ) |
|
| 2 | oveq1 | |- ( x = z -> ( x + 1 ) = ( z + 1 ) ) |
|
| 3 | 2 | oveq1d | |- ( x = z -> ( ( x + 1 ) / ( 2 ^ y ) ) = ( ( z + 1 ) / ( 2 ^ y ) ) ) |
| 4 | 1 3 | opeq12d | |- ( x = z -> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. = <. ( z / ( 2 ^ y ) ) , ( ( z + 1 ) / ( 2 ^ y ) ) >. ) |
| 5 | oveq2 | |- ( y = w -> ( 2 ^ y ) = ( 2 ^ w ) ) |
|
| 6 | 5 | oveq2d | |- ( y = w -> ( z / ( 2 ^ y ) ) = ( z / ( 2 ^ w ) ) ) |
| 7 | 5 | oveq2d | |- ( y = w -> ( ( z + 1 ) / ( 2 ^ y ) ) = ( ( z + 1 ) / ( 2 ^ w ) ) ) |
| 8 | 6 7 | opeq12d | |- ( y = w -> <. ( z / ( 2 ^ y ) ) , ( ( z + 1 ) / ( 2 ^ y ) ) >. = <. ( z / ( 2 ^ w ) ) , ( ( z + 1 ) / ( 2 ^ w ) ) >. ) |
| 9 | 4 8 | cbvmpov | |- ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) = ( z e. ZZ , w e. NN0 |-> <. ( z / ( 2 ^ w ) ) , ( ( z + 1 ) / ( 2 ^ w ) ) >. ) |
| 10 | 9 | opnmbllem | |- ( A e. ( topGen ` ran (,) ) -> A e. dom vol ) |