This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology generated by open intervals of reals with rational endpoints is the same as the open sets of the standard metric space on the reals. In particular, this proves that the standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 17-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tgqioo.1 | |- Q = ( topGen ` ( (,) " ( QQ X. QQ ) ) ) |
|
| Assertion | tgqioo | |- ( topGen ` ran (,) ) = Q |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgqioo.1 | |- Q = ( topGen ` ( (,) " ( QQ X. QQ ) ) ) |
|
| 2 | imassrn | |- ( (,) " ( QQ X. QQ ) ) C_ ran (,) |
|
| 3 | ioof | |- (,) : ( RR* X. RR* ) --> ~P RR |
|
| 4 | ffn | |- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
|
| 5 | 3 4 | ax-mp | |- (,) Fn ( RR* X. RR* ) |
| 6 | simpll | |- ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) -> x e. RR* ) |
|
| 7 | elioo1 | |- ( ( x e. RR* /\ y e. RR* ) -> ( z e. ( x (,) y ) <-> ( z e. RR* /\ x < z /\ z < y ) ) ) |
|
| 8 | 7 | biimpa | |- ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) -> ( z e. RR* /\ x < z /\ z < y ) ) |
| 9 | 8 | simp1d | |- ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) -> z e. RR* ) |
| 10 | 8 | simp2d | |- ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) -> x < z ) |
| 11 | qbtwnxr | |- ( ( x e. RR* /\ z e. RR* /\ x < z ) -> E. u e. QQ ( x < u /\ u < z ) ) |
|
| 12 | 6 9 10 11 | syl3anc | |- ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) -> E. u e. QQ ( x < u /\ u < z ) ) |
| 13 | simplr | |- ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) -> y e. RR* ) |
|
| 14 | 8 | simp3d | |- ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) -> z < y ) |
| 15 | qbtwnxr | |- ( ( z e. RR* /\ y e. RR* /\ z < y ) -> E. v e. QQ ( z < v /\ v < y ) ) |
|
| 16 | 9 13 14 15 | syl3anc | |- ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) -> E. v e. QQ ( z < v /\ v < y ) ) |
| 17 | reeanv | |- ( E. u e. QQ E. v e. QQ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) <-> ( E. u e. QQ ( x < u /\ u < z ) /\ E. v e. QQ ( z < v /\ v < y ) ) ) |
|
| 18 | df-ov | |- ( u (,) v ) = ( (,) ` <. u , v >. ) |
|
| 19 | opelxpi | |- ( ( u e. QQ /\ v e. QQ ) -> <. u , v >. e. ( QQ X. QQ ) ) |
|
| 20 | 19 | 3ad2ant2 | |- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> <. u , v >. e. ( QQ X. QQ ) ) |
| 21 | ffun | |- ( (,) : ( RR* X. RR* ) --> ~P RR -> Fun (,) ) |
|
| 22 | 3 21 | ax-mp | |- Fun (,) |
| 23 | qssre | |- QQ C_ RR |
|
| 24 | ressxr | |- RR C_ RR* |
|
| 25 | 23 24 | sstri | |- QQ C_ RR* |
| 26 | xpss12 | |- ( ( QQ C_ RR* /\ QQ C_ RR* ) -> ( QQ X. QQ ) C_ ( RR* X. RR* ) ) |
|
| 27 | 25 25 26 | mp2an | |- ( QQ X. QQ ) C_ ( RR* X. RR* ) |
| 28 | 3 | fdmi | |- dom (,) = ( RR* X. RR* ) |
| 29 | 27 28 | sseqtrri | |- ( QQ X. QQ ) C_ dom (,) |
| 30 | funfvima2 | |- ( ( Fun (,) /\ ( QQ X. QQ ) C_ dom (,) ) -> ( <. u , v >. e. ( QQ X. QQ ) -> ( (,) ` <. u , v >. ) e. ( (,) " ( QQ X. QQ ) ) ) ) |
|
| 31 | 22 29 30 | mp2an | |- ( <. u , v >. e. ( QQ X. QQ ) -> ( (,) ` <. u , v >. ) e. ( (,) " ( QQ X. QQ ) ) ) |
| 32 | 20 31 | syl | |- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> ( (,) ` <. u , v >. ) e. ( (,) " ( QQ X. QQ ) ) ) |
| 33 | 18 32 | eqeltrid | |- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> ( u (,) v ) e. ( (,) " ( QQ X. QQ ) ) ) |
| 34 | 9 | 3ad2ant1 | |- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> z e. RR* ) |
| 35 | simp3lr | |- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> u < z ) |
|
| 36 | simp3rl | |- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> z < v ) |
|
| 37 | simp2l | |- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> u e. QQ ) |
|
| 38 | 25 37 | sselid | |- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> u e. RR* ) |
| 39 | simp2r | |- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> v e. QQ ) |
|
| 40 | 25 39 | sselid | |- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> v e. RR* ) |
| 41 | elioo1 | |- ( ( u e. RR* /\ v e. RR* ) -> ( z e. ( u (,) v ) <-> ( z e. RR* /\ u < z /\ z < v ) ) ) |
|
| 42 | 38 40 41 | syl2anc | |- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> ( z e. ( u (,) v ) <-> ( z e. RR* /\ u < z /\ z < v ) ) ) |
| 43 | 34 35 36 42 | mpbir3and | |- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> z e. ( u (,) v ) ) |
| 44 | 6 | 3ad2ant1 | |- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> x e. RR* ) |
| 45 | simp3ll | |- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> x < u ) |
|
| 46 | 44 38 45 | xrltled | |- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> x <_ u ) |
| 47 | iooss1 | |- ( ( x e. RR* /\ x <_ u ) -> ( u (,) v ) C_ ( x (,) v ) ) |
|
| 48 | 44 46 47 | syl2anc | |- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> ( u (,) v ) C_ ( x (,) v ) ) |
| 49 | 13 | 3ad2ant1 | |- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> y e. RR* ) |
| 50 | simp3rr | |- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> v < y ) |
|
| 51 | 40 49 50 | xrltled | |- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> v <_ y ) |
| 52 | iooss2 | |- ( ( y e. RR* /\ v <_ y ) -> ( x (,) v ) C_ ( x (,) y ) ) |
|
| 53 | 49 51 52 | syl2anc | |- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> ( x (,) v ) C_ ( x (,) y ) ) |
| 54 | 48 53 | sstrd | |- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> ( u (,) v ) C_ ( x (,) y ) ) |
| 55 | eleq2 | |- ( w = ( u (,) v ) -> ( z e. w <-> z e. ( u (,) v ) ) ) |
|
| 56 | sseq1 | |- ( w = ( u (,) v ) -> ( w C_ ( x (,) y ) <-> ( u (,) v ) C_ ( x (,) y ) ) ) |
|
| 57 | 55 56 | anbi12d | |- ( w = ( u (,) v ) -> ( ( z e. w /\ w C_ ( x (,) y ) ) <-> ( z e. ( u (,) v ) /\ ( u (,) v ) C_ ( x (,) y ) ) ) ) |
| 58 | 57 | rspcev | |- ( ( ( u (,) v ) e. ( (,) " ( QQ X. QQ ) ) /\ ( z e. ( u (,) v ) /\ ( u (,) v ) C_ ( x (,) y ) ) ) -> E. w e. ( (,) " ( QQ X. QQ ) ) ( z e. w /\ w C_ ( x (,) y ) ) ) |
| 59 | 33 43 54 58 | syl12anc | |- ( ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) /\ ( u e. QQ /\ v e. QQ ) /\ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) ) -> E. w e. ( (,) " ( QQ X. QQ ) ) ( z e. w /\ w C_ ( x (,) y ) ) ) |
| 60 | 59 | 3exp | |- ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) -> ( ( u e. QQ /\ v e. QQ ) -> ( ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) -> E. w e. ( (,) " ( QQ X. QQ ) ) ( z e. w /\ w C_ ( x (,) y ) ) ) ) ) |
| 61 | 60 | rexlimdvv | |- ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) -> ( E. u e. QQ E. v e. QQ ( ( x < u /\ u < z ) /\ ( z < v /\ v < y ) ) -> E. w e. ( (,) " ( QQ X. QQ ) ) ( z e. w /\ w C_ ( x (,) y ) ) ) ) |
| 62 | 17 61 | biimtrrid | |- ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) -> ( ( E. u e. QQ ( x < u /\ u < z ) /\ E. v e. QQ ( z < v /\ v < y ) ) -> E. w e. ( (,) " ( QQ X. QQ ) ) ( z e. w /\ w C_ ( x (,) y ) ) ) ) |
| 63 | 12 16 62 | mp2and | |- ( ( ( x e. RR* /\ y e. RR* ) /\ z e. ( x (,) y ) ) -> E. w e. ( (,) " ( QQ X. QQ ) ) ( z e. w /\ w C_ ( x (,) y ) ) ) |
| 64 | 63 | ralrimiva | |- ( ( x e. RR* /\ y e. RR* ) -> A. z e. ( x (,) y ) E. w e. ( (,) " ( QQ X. QQ ) ) ( z e. w /\ w C_ ( x (,) y ) ) ) |
| 65 | qtopbas | |- ( (,) " ( QQ X. QQ ) ) e. TopBases |
|
| 66 | eltg2b | |- ( ( (,) " ( QQ X. QQ ) ) e. TopBases -> ( ( x (,) y ) e. ( topGen ` ( (,) " ( QQ X. QQ ) ) ) <-> A. z e. ( x (,) y ) E. w e. ( (,) " ( QQ X. QQ ) ) ( z e. w /\ w C_ ( x (,) y ) ) ) ) |
|
| 67 | 65 66 | ax-mp | |- ( ( x (,) y ) e. ( topGen ` ( (,) " ( QQ X. QQ ) ) ) <-> A. z e. ( x (,) y ) E. w e. ( (,) " ( QQ X. QQ ) ) ( z e. w /\ w C_ ( x (,) y ) ) ) |
| 68 | 64 67 | sylibr | |- ( ( x e. RR* /\ y e. RR* ) -> ( x (,) y ) e. ( topGen ` ( (,) " ( QQ X. QQ ) ) ) ) |
| 69 | 68 | rgen2 | |- A. x e. RR* A. y e. RR* ( x (,) y ) e. ( topGen ` ( (,) " ( QQ X. QQ ) ) ) |
| 70 | ffnov | |- ( (,) : ( RR* X. RR* ) --> ( topGen ` ( (,) " ( QQ X. QQ ) ) ) <-> ( (,) Fn ( RR* X. RR* ) /\ A. x e. RR* A. y e. RR* ( x (,) y ) e. ( topGen ` ( (,) " ( QQ X. QQ ) ) ) ) ) |
|
| 71 | 5 69 70 | mpbir2an | |- (,) : ( RR* X. RR* ) --> ( topGen ` ( (,) " ( QQ X. QQ ) ) ) |
| 72 | frn | |- ( (,) : ( RR* X. RR* ) --> ( topGen ` ( (,) " ( QQ X. QQ ) ) ) -> ran (,) C_ ( topGen ` ( (,) " ( QQ X. QQ ) ) ) ) |
|
| 73 | 71 72 | ax-mp | |- ran (,) C_ ( topGen ` ( (,) " ( QQ X. QQ ) ) ) |
| 74 | 2basgen | |- ( ( ( (,) " ( QQ X. QQ ) ) C_ ran (,) /\ ran (,) C_ ( topGen ` ( (,) " ( QQ X. QQ ) ) ) ) -> ( topGen ` ( (,) " ( QQ X. QQ ) ) ) = ( topGen ` ran (,) ) ) |
|
| 75 | 2 73 74 | mp2an | |- ( topGen ` ( (,) " ( QQ X. QQ ) ) ) = ( topGen ` ran (,) ) |
| 76 | 1 75 | eqtr2i | |- ( topGen ` ran (,) ) = Q |