This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: All open sets are measurable. This alternative proof of opnmbl is significantly shorter, at the expense of invoking countable choice ax-cc . (This was also the original proof before the current opnmbl was discovered.) (Contributed by Mario Carneiro, 17-Jun-2014) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opnmblALT | ⊢ ( 𝐴 ∈ ( topGen ‘ ran (,) ) → 𝐴 ∈ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopbas | ⊢ ( (,) “ ( ℚ × ℚ ) ) ∈ TopBases | |
| 2 | eltg3 | ⊢ ( ( (,) “ ( ℚ × ℚ ) ) ∈ TopBases → ( 𝐴 ∈ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) ↔ ∃ 𝑥 ( 𝑥 ⊆ ( (,) “ ( ℚ × ℚ ) ) ∧ 𝐴 = ∪ 𝑥 ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( 𝐴 ∈ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) ↔ ∃ 𝑥 ( 𝑥 ⊆ ( (,) “ ( ℚ × ℚ ) ) ∧ 𝐴 = ∪ 𝑥 ) ) |
| 4 | uniiun | ⊢ ∪ 𝑥 = ∪ 𝑦 ∈ 𝑥 𝑦 | |
| 5 | ssdomg | ⊢ ( ( (,) “ ( ℚ × ℚ ) ) ∈ TopBases → ( 𝑥 ⊆ ( (,) “ ( ℚ × ℚ ) ) → 𝑥 ≼ ( (,) “ ( ℚ × ℚ ) ) ) ) | |
| 6 | 1 5 | ax-mp | ⊢ ( 𝑥 ⊆ ( (,) “ ( ℚ × ℚ ) ) → 𝑥 ≼ ( (,) “ ( ℚ × ℚ ) ) ) |
| 7 | omelon | ⊢ ω ∈ On | |
| 8 | qnnen | ⊢ ℚ ≈ ℕ | |
| 9 | xpen | ⊢ ( ( ℚ ≈ ℕ ∧ ℚ ≈ ℕ ) → ( ℚ × ℚ ) ≈ ( ℕ × ℕ ) ) | |
| 10 | 8 8 9 | mp2an | ⊢ ( ℚ × ℚ ) ≈ ( ℕ × ℕ ) |
| 11 | xpnnen | ⊢ ( ℕ × ℕ ) ≈ ℕ | |
| 12 | 10 11 | entri | ⊢ ( ℚ × ℚ ) ≈ ℕ |
| 13 | nnenom | ⊢ ℕ ≈ ω | |
| 14 | 12 13 | entr2i | ⊢ ω ≈ ( ℚ × ℚ ) |
| 15 | isnumi | ⊢ ( ( ω ∈ On ∧ ω ≈ ( ℚ × ℚ ) ) → ( ℚ × ℚ ) ∈ dom card ) | |
| 16 | 7 14 15 | mp2an | ⊢ ( ℚ × ℚ ) ∈ dom card |
| 17 | ioof | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ | |
| 18 | ffun | ⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → Fun (,) ) | |
| 19 | 17 18 | ax-mp | ⊢ Fun (,) |
| 20 | qssre | ⊢ ℚ ⊆ ℝ | |
| 21 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 22 | 20 21 | sstri | ⊢ ℚ ⊆ ℝ* |
| 23 | xpss12 | ⊢ ( ( ℚ ⊆ ℝ* ∧ ℚ ⊆ ℝ* ) → ( ℚ × ℚ ) ⊆ ( ℝ* × ℝ* ) ) | |
| 24 | 22 22 23 | mp2an | ⊢ ( ℚ × ℚ ) ⊆ ( ℝ* × ℝ* ) |
| 25 | 17 | fdmi | ⊢ dom (,) = ( ℝ* × ℝ* ) |
| 26 | 24 25 | sseqtrri | ⊢ ( ℚ × ℚ ) ⊆ dom (,) |
| 27 | fores | ⊢ ( ( Fun (,) ∧ ( ℚ × ℚ ) ⊆ dom (,) ) → ( (,) ↾ ( ℚ × ℚ ) ) : ( ℚ × ℚ ) –onto→ ( (,) “ ( ℚ × ℚ ) ) ) | |
| 28 | 19 26 27 | mp2an | ⊢ ( (,) ↾ ( ℚ × ℚ ) ) : ( ℚ × ℚ ) –onto→ ( (,) “ ( ℚ × ℚ ) ) |
| 29 | fodomnum | ⊢ ( ( ℚ × ℚ ) ∈ dom card → ( ( (,) ↾ ( ℚ × ℚ ) ) : ( ℚ × ℚ ) –onto→ ( (,) “ ( ℚ × ℚ ) ) → ( (,) “ ( ℚ × ℚ ) ) ≼ ( ℚ × ℚ ) ) ) | |
| 30 | 16 28 29 | mp2 | ⊢ ( (,) “ ( ℚ × ℚ ) ) ≼ ( ℚ × ℚ ) |
| 31 | domentr | ⊢ ( ( ( (,) “ ( ℚ × ℚ ) ) ≼ ( ℚ × ℚ ) ∧ ( ℚ × ℚ ) ≈ ℕ ) → ( (,) “ ( ℚ × ℚ ) ) ≼ ℕ ) | |
| 32 | 30 12 31 | mp2an | ⊢ ( (,) “ ( ℚ × ℚ ) ) ≼ ℕ |
| 33 | domtr | ⊢ ( ( 𝑥 ≼ ( (,) “ ( ℚ × ℚ ) ) ∧ ( (,) “ ( ℚ × ℚ ) ) ≼ ℕ ) → 𝑥 ≼ ℕ ) | |
| 34 | 6 32 33 | sylancl | ⊢ ( 𝑥 ⊆ ( (,) “ ( ℚ × ℚ ) ) → 𝑥 ≼ ℕ ) |
| 35 | imassrn | ⊢ ( (,) “ ( ℚ × ℚ ) ) ⊆ ran (,) | |
| 36 | ffn | ⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) | |
| 37 | 17 36 | ax-mp | ⊢ (,) Fn ( ℝ* × ℝ* ) |
| 38 | ioombl | ⊢ ( 𝑥 (,) 𝑦 ) ∈ dom vol | |
| 39 | 38 | rgen2w | ⊢ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* ( 𝑥 (,) 𝑦 ) ∈ dom vol |
| 40 | ffnov | ⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ dom vol ↔ ( (,) Fn ( ℝ* × ℝ* ) ∧ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* ( 𝑥 (,) 𝑦 ) ∈ dom vol ) ) | |
| 41 | 37 39 40 | mpbir2an | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ dom vol |
| 42 | frn | ⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ dom vol → ran (,) ⊆ dom vol ) | |
| 43 | 41 42 | ax-mp | ⊢ ran (,) ⊆ dom vol |
| 44 | 35 43 | sstri | ⊢ ( (,) “ ( ℚ × ℚ ) ) ⊆ dom vol |
| 45 | sstr | ⊢ ( ( 𝑥 ⊆ ( (,) “ ( ℚ × ℚ ) ) ∧ ( (,) “ ( ℚ × ℚ ) ) ⊆ dom vol ) → 𝑥 ⊆ dom vol ) | |
| 46 | 44 45 | mpan2 | ⊢ ( 𝑥 ⊆ ( (,) “ ( ℚ × ℚ ) ) → 𝑥 ⊆ dom vol ) |
| 47 | dfss3 | ⊢ ( 𝑥 ⊆ dom vol ↔ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol ) | |
| 48 | 46 47 | sylib | ⊢ ( 𝑥 ⊆ ( (,) “ ( ℚ × ℚ ) ) → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol ) |
| 49 | iunmbl2 | ⊢ ( ( 𝑥 ≼ ℕ ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol ) → ∪ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol ) | |
| 50 | 34 48 49 | syl2anc | ⊢ ( 𝑥 ⊆ ( (,) “ ( ℚ × ℚ ) ) → ∪ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol ) |
| 51 | 4 50 | eqeltrid | ⊢ ( 𝑥 ⊆ ( (,) “ ( ℚ × ℚ ) ) → ∪ 𝑥 ∈ dom vol ) |
| 52 | eleq1 | ⊢ ( 𝐴 = ∪ 𝑥 → ( 𝐴 ∈ dom vol ↔ ∪ 𝑥 ∈ dom vol ) ) | |
| 53 | 51 52 | syl5ibrcom | ⊢ ( 𝑥 ⊆ ( (,) “ ( ℚ × ℚ ) ) → ( 𝐴 = ∪ 𝑥 → 𝐴 ∈ dom vol ) ) |
| 54 | 53 | imp | ⊢ ( ( 𝑥 ⊆ ( (,) “ ( ℚ × ℚ ) ) ∧ 𝐴 = ∪ 𝑥 ) → 𝐴 ∈ dom vol ) |
| 55 | 54 | exlimiv | ⊢ ( ∃ 𝑥 ( 𝑥 ⊆ ( (,) “ ( ℚ × ℚ ) ) ∧ 𝐴 = ∪ 𝑥 ) → 𝐴 ∈ dom vol ) |
| 56 | 3 55 | sylbi | ⊢ ( 𝐴 ∈ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) → 𝐴 ∈ dom vol ) |
| 57 | eqid | ⊢ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) = ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) | |
| 58 | 57 | tgqioo | ⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) |
| 59 | 56 58 | eleq2s | ⊢ ( 𝐴 ∈ ( topGen ‘ ran (,) ) → 𝐴 ∈ dom vol ) |