This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sets which are open in a measurable subspace are measurable. (Contributed by Mario Carneiro, 17-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subopnmbl.1 | |- J = ( ( topGen ` ran (,) ) |`t A ) |
|
| Assertion | subopnmbl | |- ( ( A e. dom vol /\ B e. J ) -> B e. dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subopnmbl.1 | |- J = ( ( topGen ` ran (,) ) |`t A ) |
|
| 2 | 1 | eleq2i | |- ( B e. J <-> B e. ( ( topGen ` ran (,) ) |`t A ) ) |
| 3 | retop | |- ( topGen ` ran (,) ) e. Top |
|
| 4 | elrest | |- ( ( ( topGen ` ran (,) ) e. Top /\ A e. dom vol ) -> ( B e. ( ( topGen ` ran (,) ) |`t A ) <-> E. x e. ( topGen ` ran (,) ) B = ( x i^i A ) ) ) |
|
| 5 | 3 4 | mpan | |- ( A e. dom vol -> ( B e. ( ( topGen ` ran (,) ) |`t A ) <-> E. x e. ( topGen ` ran (,) ) B = ( x i^i A ) ) ) |
| 6 | 2 5 | bitrid | |- ( A e. dom vol -> ( B e. J <-> E. x e. ( topGen ` ran (,) ) B = ( x i^i A ) ) ) |
| 7 | opnmbl | |- ( x e. ( topGen ` ran (,) ) -> x e. dom vol ) |
|
| 8 | id | |- ( A e. dom vol -> A e. dom vol ) |
|
| 9 | inmbl | |- ( ( x e. dom vol /\ A e. dom vol ) -> ( x i^i A ) e. dom vol ) |
|
| 10 | 7 8 9 | syl2anr | |- ( ( A e. dom vol /\ x e. ( topGen ` ran (,) ) ) -> ( x i^i A ) e. dom vol ) |
| 11 | eleq1a | |- ( ( x i^i A ) e. dom vol -> ( B = ( x i^i A ) -> B e. dom vol ) ) |
|
| 12 | 10 11 | syl | |- ( ( A e. dom vol /\ x e. ( topGen ` ran (,) ) ) -> ( B = ( x i^i A ) -> B e. dom vol ) ) |
| 13 | 12 | rexlimdva | |- ( A e. dom vol -> ( E. x e. ( topGen ` ran (,) ) B = ( x i^i A ) -> B e. dom vol ) ) |
| 14 | 6 13 | sylbid | |- ( A e. dom vol -> ( B e. J -> B e. dom vol ) ) |
| 15 | 14 | imp | |- ( ( A e. dom vol /\ B e. J ) -> B e. dom vol ) |