This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative-type law for addition and subtraction. (Contributed by NM, 6-Aug-2003) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addsubass | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) - C ) = ( A + ( B - C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> A e. CC ) |
|
| 2 | subcl | |- ( ( B e. CC /\ C e. CC ) -> ( B - C ) e. CC ) |
|
| 3 | 2 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B - C ) e. CC ) |
| 4 | simp3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> C e. CC ) |
|
| 5 | 1 3 4 | addassd | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + ( B - C ) ) + C ) = ( A + ( ( B - C ) + C ) ) ) |
| 6 | npcan | |- ( ( B e. CC /\ C e. CC ) -> ( ( B - C ) + C ) = B ) |
|
| 7 | 6 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( B - C ) + C ) = B ) |
| 8 | 7 | oveq2d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + ( ( B - C ) + C ) ) = ( A + B ) ) |
| 9 | 5 8 | eqtrd | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + ( B - C ) ) + C ) = ( A + B ) ) |
| 10 | 9 | oveq1d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A + ( B - C ) ) + C ) - C ) = ( ( A + B ) - C ) ) |
| 11 | 1 3 | addcld | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + ( B - C ) ) e. CC ) |
| 12 | pncan | |- ( ( ( A + ( B - C ) ) e. CC /\ C e. CC ) -> ( ( ( A + ( B - C ) ) + C ) - C ) = ( A + ( B - C ) ) ) |
|
| 13 | 11 4 12 | syl2anc | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A + ( B - C ) ) + C ) - C ) = ( A + ( B - C ) ) ) |
| 14 | 10 13 | eqtr3d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) - C ) = ( A + ( B - C ) ) ) |