This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is even iff it is twice another integer. (Contributed by AV, 25-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | even2n | |- ( 2 || N <-> E. n e. ZZ ( 2 x. n ) = N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evenelz | |- ( 2 || N -> N e. ZZ ) |
|
| 2 | 2z | |- 2 e. ZZ |
|
| 3 | 2 | a1i | |- ( n e. ZZ -> 2 e. ZZ ) |
| 4 | id | |- ( n e. ZZ -> n e. ZZ ) |
|
| 5 | 3 4 | zmulcld | |- ( n e. ZZ -> ( 2 x. n ) e. ZZ ) |
| 6 | 5 | adantr | |- ( ( n e. ZZ /\ ( 2 x. n ) = N ) -> ( 2 x. n ) e. ZZ ) |
| 7 | eleq1 | |- ( ( 2 x. n ) = N -> ( ( 2 x. n ) e. ZZ <-> N e. ZZ ) ) |
|
| 8 | 7 | adantl | |- ( ( n e. ZZ /\ ( 2 x. n ) = N ) -> ( ( 2 x. n ) e. ZZ <-> N e. ZZ ) ) |
| 9 | 6 8 | mpbid | |- ( ( n e. ZZ /\ ( 2 x. n ) = N ) -> N e. ZZ ) |
| 10 | 9 | rexlimiva | |- ( E. n e. ZZ ( 2 x. n ) = N -> N e. ZZ ) |
| 11 | divides | |- ( ( 2 e. ZZ /\ N e. ZZ ) -> ( 2 || N <-> E. n e. ZZ ( n x. 2 ) = N ) ) |
|
| 12 | zcn | |- ( n e. ZZ -> n e. CC ) |
|
| 13 | 2cnd | |- ( n e. ZZ -> 2 e. CC ) |
|
| 14 | 12 13 | mulcomd | |- ( n e. ZZ -> ( n x. 2 ) = ( 2 x. n ) ) |
| 15 | 14 | eqeq1d | |- ( n e. ZZ -> ( ( n x. 2 ) = N <-> ( 2 x. n ) = N ) ) |
| 16 | 15 | rexbiia | |- ( E. n e. ZZ ( n x. 2 ) = N <-> E. n e. ZZ ( 2 x. n ) = N ) |
| 17 | 11 16 | bitrdi | |- ( ( 2 e. ZZ /\ N e. ZZ ) -> ( 2 || N <-> E. n e. ZZ ( 2 x. n ) = N ) ) |
| 18 | 2 17 | mpan | |- ( N e. ZZ -> ( 2 || N <-> E. n e. ZZ ( 2 x. n ) = N ) ) |
| 19 | 1 10 18 | pm5.21nii | |- ( 2 || N <-> E. n e. ZZ ( 2 x. n ) = N ) |